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Motivated by the recently established duality between elasticity of crystals and a fracton tensor
gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics
of the underlying atoms. We thereby derive a hybrid vector-tensor gauge dual of a supersolid,
which features both crystalline and superfluid order. The gauge dual describes a fracton state of
matter with full dipole mobility endowed by the superfluid order, as governed by “mutual” axion
electrodynamics between the fracton and vortex sectors of the theory, with an associated generalized
Witten effect. Vortex condensation restores U(1) symmetry, confines dipoles to be subdimensional
(recovering the dislocation glide constraint of a commensurate quantum crystal), and drives a phase
transition between two distinct fracton phases. Meanwhile, condensation of elementary fracton
dipoles and charges, respectively, provide a gauge dual description of the super-hexatic and ordinary
superfluid. Consistent with conventional wisdom, in the absence of crystalline order, U(1)-symmetric
phases are prohibited at zero temperature via a mechanism akin to deconfined quantum criticality.

Introduction. Many familiar symmetry-breaking
phases of matter possess a useful dual description in
the language of gauge theory. Perhaps the most well-
known example is boson-vortex duality, which describes
two-dimensional superfluids in terms of a Maxwell gauge
theory.1–3 In this mapping, the vortices and Goldstone
mode of the superfluid correspond to charges and photon
in the Coulomb phase of the gauge theory, respectively.
Meanwhile, a Mott insulating phase of bosons can be
described as the Higgs phase in the dual gauge theory.

More recently, it has been realized that two-
dimensional elasticity theory has a similar relationship
with a rank-two tensor gauge theory hosting fracton
excitations.4 (We refer the reader to a recent review5

and to selected literature6–25 for an overview of frac-
tons.) Phonons map onto the gapless gauge modes, while
disclinations and dislocations map onto fracton charges
and dipoles, respectively. The familiar mobility restric-
tions of lattice defects26–29 are neatly encoded in higher
moment charge conservation laws of the tensor gauge
theory. We note the existence of several related gauge
theory dualities concerning elasticity theory.30–33

While fracton-elasticity duality4 provides a useful de-
scription of a Mott-insulating “commensurate” crystal
(with gapped vacancy/interstitial defects) and offers an
insightful embodiment of fracton phenomena, it is not
immediately clear how such a formulation can capture
a quantum melting transition to non-crystalline phases
of the underlying atoms. Specifically, the tensor-only
gauge theory4 is incomplete as it does not incorporate
the quantum statistics of the constituent particles, which
is essential in a fluid state. The tensor gauge theory thus
cannot account for the off-diagonal order of the underly-
ing bosonic atoms seen in superfluid and supersolid34–37

phases. In fact, the subdimensional nature of dipoles
(absence of dislocation climb38,39) crucially relies on
atom number conservation and the associated U(1) sym-
metry. The deficiency is most striking as one considers
a quantum fluid ground state driven by condensation

FIG. 1: A schematic phase diagram illustrating phases de-
rived from the supersolid (a U(1)-symmetry broken frac-
ton phase, F ). Upon condensation of appropriate defects,
bosons can transition to a commensurate crystal (a U(1)-
symmetric fracton phase, FU(1)), super-hexatic, or superfluid
phase. Note that U(1)-symmetric liquid and hexatic phases
are forbidden at zero temperature.

of topological lattice defects (dislocations and/or discli-
nations). The tensor gauge theory gives no indication
why such a fluid generically must exhibit a broken U(1)
symmetry associated with superfluid order, seemingly
allowing melting into a fully symmetric gapped state.
However, in a continuum (or at incommensurate fillings)
such a“normal”quantum liquid is forbidden by the Lieb-
Schultz-Mattis theorem.40–42 Thus, a complete theory
must encode a mechanism tying together the transla-
tional and U(1) symmetries precluding their simultane-
ous preservation in the quantum ground state.

In this Letter, we address these basic issues by start-
ing with a model of a two-dimensional supersolid (i.e.
an “incommensurate” crystal), characterized by inter-
twined crystalline and off-diagonal U(1) orders, driven
by condensation of vacancy/interstitial defects in the
crystal’s ground state. We perform a duality transfor-
mation on this model to arrive at a hybrid vector-tensor
U(1) fracton gauge theory, combining aspects of both
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fracton-elasticity and particle-vortex duality. This gauge
dual exhibits “mutual” axion electrodynamics between
the vector and tensor sectors of the theory, along with
an associated generalized Witten effect.43,44 The bro-
ken particle-hole symmetry of the supersolid, restored
only in the commensurate crystal, corresponds to an ef-
fective “time-reversal” symmetry breaking of the gauge
dual, akin to the role of particle-hole symmetry in Son’s
theory of a half-filled Landau level.45–47

The vector-tensor gauge dual of the supersolid de-
scribes a fracton phase in which dipoles are fully mo-
bile, endowed by the broken U(1) symmetry of atom
number conservation. The supersolid then serves as a
“mother” state from which other phases can be obtained
via defect condensation transitions. Vortex condensation
drives a quantum transition from the supersolid to the
commensurate crystal, which restores U(1) symmetry
and confines dipoles to be one-dimensional, correspond-
ing to the familiar dislocation glide-only constraint.38,39

Meanwhile, condensations of fracton dipoles and charges,
respectively, lead to gauge dual descriptions of super-
hexatic and superfluid phases. Because dislocations and
disclinations carry U(1) boson number (as encoded in the
generalized Witten effect, to be discussed below), prolif-
eration of these defects at quantum melting transitions
automatically condenses vacancies/interstitials, leading
to off-diagonal superfluid order in the quantum hexatic
and isotropic liquids. Furthermore, this charge attach-
ment allows a direct transition between the commensu-
rate crystal and super-hexatic phases, characterized by
distinct Landau order parameters. This transition, if di-
rect and continuous, lies outside the Landau-Ginzburg
framework, drawing an intriguing connection with the
physics of deconfined quantum criticality.48,49

Duality Transformation. To faithfully capture the low-
energy degrees of freedom of a supersolid, we represent

the bosonic atom field annihilation operator, ψ̂(x) =

ψ̂0 +
∑

G ψ̂Ge
iG·x in terms of long wavelength and

reciprocal lattice (G) components ψ̂0 =
√
n̂0e

iφ̂ and

ψ̂G =
√
n̂Ge

iφ̂+iG·û, respectively. The density operators
n̂0, n̂G ≡ n0G + G−1 · π̂ and the corresponding canoni-

cally conjugate phases φ̂, G−1 ·û describe the low-energy
(superfluid phase and phonon) excitations of the super-
fluid and crystalline orders, respectively. The associated
Hamiltonian density, consisting of the kinetic and inter-
action components, is given by:

Ĥ =
1

2
ρ−1π̂2 +

1

2
C̃ijk`ûij ûk` +

1

2
K̃(∇φ̂)2 +

1

2
χ−1n̂2

−µn̂+ g̃1∇φ̂ · π̂ + g̃2n̂ûii , (1)

where π̂ and n̂ = n̂0 +
∑

G n̂G are the momentum
and number density, ûij = 1

2 (∂iûj + ∂j ûi) is the sym-
metrized linear strain tensor, µ the chemical potential,
ρ the boson average mass density, K̃ the superfluid stiff-
ness, χ the compressibility, and C̃ijk` the tensor of elastic
coefficients38,39, capturing elasticity and dynamics of the
quantum crystal. As usual, the appearance of the anti-

symmetric strain, εij∂iuj in the Hamiltonian is forbidden
by the underlying rotational invariance. The g̃-terms are
the symmetry-allowed current- and number-density cou-
plings between the elastic and superfluid components.
At the microscopic level, the n-φ sector encodes con-
densation of vacancy/interstitial defects that allows for
superfluidity to coexist with crystalline order, breaking
respective global U(1) and spatial symmetries.

The dual description of the physics is most efficiently
derived in an equivalent coherent-state path-integral for-
mulation, Z =

∫
[dπ][du][dn][dφ]eiS , with the action

S =
∫
x,t

[π · ∂tu− n∂tφ−H[π,u, n, φ]], (with
∫
x,t
≡∫

d2xdt, ~ = 1),

S =

∫
x,t

[
1

2
ρ(∂tu)2 − 1

2
Cijk`uijuk` +

1

2
χ(∂tϕ)2

−1

2
K(∇ϕ)2 − g1∂tu ·∇ϕ+ g2∂tϕ∇ · u

]
. (2)

Above we defined a shifted phase field ϕ = φ− µt, stiff-
nesses K = K̃ − ρg̃21 and Cijk` = C̃ijk` − χg̃22δijδk`, and
couplings g1 = g̃1ρ and g2 = g̃2χ. To develop physical in-
tuition for the cross terms and constrain the coefficients
g1,2, we analyze the equation of motion for ϕ,

∂tnd + ∇ · jd = g2∂t∇ · u− g1∇ · ∂tu ≡ Js, (3)

where we have identified the net vacancy/interstitial de-
fect number nd = ni − nv and current density jd as

nd = −χ∂tϕ = n+ g2∇ · u, (4)

jd = K∇ϕ = j− g1∂tu, (5)

In terms of total atom number n and current den-
sity j, the equation of motion simply reduces to the
full boson continuity equation ∂tn + ∇ · j = 0. The
source term Js represents the non-conservation of vacan-
cies/interstitials. In the absense of topological lattice de-
fects (i.e. for single-valued lattice distortions, such that
∂i∂tu = ∂t∂iu), the number difference nd is conserved,
which thereby requires Js = 0, corresponding to g1 =
g2 ≡ g. In the presense of dislocations (nonzero Burgers
vector density ∇×∇ui = bi), Js is generically nonzero
and is given by the trace of the dislocation current ten-
sor J ijs = εikεj`(∂t∂k−∂k∂t)u` = g(ẑ×v)(ibj).

4,50 Eq.(3)
then dictates that dislocation climb (motion transverse
to its Burgers vector b) leads to vacancy/interstitial cre-
ation/annihilation, as dictated by microscopics.4,50

It is also enlightening to examine the phonon equation
of motion,

ρ∂2t ui − Cijk`∂juk` = g(∂t∂i − ∂i∂t)ϕ ≡ gεijjjv , (6)

where jv = vnv is the current of vortices moving with
velocity v in the vacancy/interstitial condensate. This
Newton’s equation reveals that, while total momentum
π = ρ∂tu−g∇ϕ (with the total stress Cijk`uk`+gndδij)
is conserved, the phonon momentum can change due to
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vortex motion, which causes decay of supercurrents and
imparts a force gẑ× jv on the lattice.

To obtain a dual gauge theory description of the ef-
fective action, S, for a supersolid, it is convenient to
introduce Hubbard-Stratonovich fields n, πi, σij , and ji,
with the resulting action,

S =

∫
x,t

[
πiu̇i −

1

2
ρ̄−1π2 +

1

2
C̄−1ijk`σ

ijσk` − σijuij − nϕ̇

− 1

2
χ̄−1n2 +

1

2
K̄−1j2 − ji∂iϕ− ḡπiji − gC−1iik`σ

k`n

]
,

(7)

where dots denote time derivatives, and the“barred”cou-
plings are shifted counterparts of those appearing in Eq.
(2), such that the original action is recovered when all
four Hubbard-Stratonovich fields are integrated out. To
execute the duality and obtain a physical interpretation

of these dual fields, we break up the phonon ui = ũi+u
(s)
i

and superfluid phase ϕ = ϕ̃ + ϕ(s) into a single-valued

(ũi, ϕ̃) and singular (u
(s)
i , ϕ(s)) components, respectively.

Because ũi, ϕ̃ enter the action linearly, they can be in-
tegrated out of the partition function, leading to local
constraints on total momentum (Newton’s law) and on
the total atom number conservation, giving the continu-
ity equations ∂tπ

i − ∂jσ
ij = 0 and ∂tn + ∇ · j = 0,

consistent with the equations of motion found earlier
in Eqs. (3) and (6). While lattice momentum and
vacancy/interstitial number are not independently con-
served, they are exactly conserved for the total atom mo-
mentum and the total number of atoms (combined va-
cancy/interstitial and lattice). The corresponding total
currents are the stress σij and total atomic current j.

To solve these continuity constraints, we introduce ro-
tated field redefinitions: πi = εijBj , σ

ij = −εikεj`Ek`σ ,
n = b, and ji = εijej . In terms of these fields, the con-
straints take the form of Faraday equations:

∂tB
i + εjk∂

jEkiσ = 0 , ∂tb+ εjk∂
jek = 0 (8)

which (as in standard electrodynamics and in basic
boson-vortex duality) can be solved by symmetric tensor
and vector gauge potentials, in terms of which the fields
take the form Bi = εjk∂

jAki, Eijσ = −∂tAij − ∂i∂jA0,
b = εij∂iaj , and ei = −∂tai−∂ia0. Plugging these forms
back into Eq. (7), we obtain the dualized action, taking
the form of a hybrid vector-tensor gauge theory,

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ̄−1B2 +

1

2
K̄−1e2 − 1

2
χ̄−1b2

− ḡB · e− gEiib− J ijs Aij − nsA0 − jv · a− nva0
]
,

(9)

where Ĉijk` = εisεjtεknε`mC̄stnm, Eij = Ĉ−1ijk`E
k`
σ is the

canonical conjugate to Aij , J
ij
s is the tensor disloca-

tion current described earlier, and ns = εikεj`∂i∂ju
(s)
k` =

s + ẑ ·∇ × b is the total disclination density, sourced
by elementary disclinations s = εij∂i∂jθ

(s) (i.e. wind-

ings of the bond angle θ = 1
2εij∂iu

(s)
j ) and the curl of

the dislocation density, b = εij∂i∂ju
(s). The tensor

sector takes the form of the scalar charge fracton ten-
sor gauge theory, with disclinations ns acting as fracton
charges, obeying conservation of both charge and dipole
moment. Similarly, nv is the vortex number, defined by
nv = εij∂i∂jϕ

(s), and the vortex current density jv is
defined in Eq. (6).

We observe that on this dual gauge theory side, the
boson-elastic cross-coupling of the quantum crystal man-
ifests itself as generalized “axion” terms featuring prod-
ucts of electric and magnetic fields.44 Note that these ax-
ion terms are allowed in two spatial dimensions, instead
of the usual three, due to the presence of extra tensor
indices. In close analogy with the Witten effect43, we
expect such axion terms to lead to charge attachment,
manifesting in modified Gauss’s laws in the theory. In-
deed, by varying the action with respect to a0, we obtain
the Gauss’s law for dual electric charges (vortices) as:

∇ · e = nv − ḡ∇ ·B, (10)

corresponding to attachment of magnetic flux of the dual
tensor gauge theory to the dual electric charges (vor-
tices). In the supersolid language, we have ∇·B = ∇×π,
indicating that the above flux attachment corresponds to
the crystal’s angular momentum contribution to the va-
cancies/interstitials’ vorticity.

Similarly, the tensor Gauss’s law for fractons

∂i∂jE
ij = ns + gĈ−1iik`∂k∂`b (11)

is modified by an inhomogeneous magnetic flux density.
Since the latter corresponds to boson density, this mod-
ified Gauss’s law encodes the fact that lattice defects
carry boson number. In more detail, the second deriva-
tive structure of the right-hand side indicates that bosons
are attached to quadrupoles of disclinations (fractons).
As we elaborate below, this feature is crucial in exclud-
ing unphysical Mott-insulating phases of bosons when
crystal defects have melted the lattice.

While the charge attachment effects are similar, these
generalized axion terms have several notable differences
from the conventional axion term of Maxwell theory,
such as the absence of topological invariance or period-
icity. Since these concepts play no role in the physical
theory of supersolids, we relegate discussion of most of
these differences to the Supplemental Material. For now,
we note the unusual symmetry properties of these terms,
which are even under both time reversal and spatial in-
version (ei → −ei, Bi → −Bi, b and Eij unchanged).
Instead, they violate particle-hole symmetry (b → −b,
Bi → −Bi, ei and Eij unchanged), which acts as an ef-
fective “time-reversal,” as encountered previously in dis-
cussions of the half-filled Landau level.45–47 This is con-
sistent with the fact that the particle-hole symmetry of a
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FIG. 2: A disclination quadrupole, constructed as a bound
state of two equal and opposite dislocations with Burgers
vectors b and −b, carries a unit of vacancy number, as can
be seen by the deficiency of a single atom in the middle of
the configuration.

commensurate crystal is generically spontaneously bro-
ken in a supersolid via condensation of vacancies or in-
terstitials. As such, there is no symmetry consideration
which forces g to take a particular quantized value. In-
stead, g takes a nonuniversal value which is determined
by the microscopic condition that a bound state of two
equal and opposite dislocations separated by a single lat-
tice site carries one unit of vacancy number (Fig.2).

Fracton phases and quantum transitions. In the pre-
vious section, we established a dual vector-tensor U(1)
gauge theory of a supersolid, with the two sectors cou-
pled by axion-like terms. We can explicitly account for
the quantum dynamics of the dual matter fields (vortices
of the condensate, and disclinations and dislocations of
the quantum crystal) in terms of a coupled vector-tensor
dual “superconductor,” with the action S = SMax + Sc,
where SMax is the Maxwell piece of the action for both
vector and tensor sectors, and:

Sc =

∫
x,t

[
µb− gB · e− gEiib− cos(

˙̃
φ− a0)− cos(

˙̃
θ −A0)

+ η cos(∇φ̃− a) + η′
∑
n

cos(αij(n)(∂i∂j θ̃ −Aij))
]
,

(12)

where dots denote time derivatives and α
(n)
ij = a2b

(n)
i b

(n)
j

encodes the glide-only constraint of dislocations (with
lattice constant a). The model exhibits a variety of quan-
tum phases with distinct patterns of dual matter (topo-
logical defect) condensation. The Coulomb phase of the
tensor gauge sector (corresponding to crystalline order,
i.e., a vacuum of disclinations and dislocations) displays
two qualitatively distinct fractonic quantum states.

(i) One Coulomb phase of the tensor gauge theory is
a U(1) symmetric fracton state, FU(1), that is in the
Higgs phase of the vector gauge theory, correspond-
ing to condensed vortices, describing a commensurate
Mott-insulating crystal. In this phase, the gapped vec-
tor gauge field a can be safely integrated out, leading
to a gapless tensor-only gauge theory in its Coulomb
phase, previously derived in Ref. 4. It exhibits immo-
bile fracton charges (disclinations) and subdimensional
fracton dipoles, p = ẑ × b (dislocations). These frac-

FIG. 3: a) Fracton motion is forbidden as it requires emission
of a conserved dipole. b) Longitudinal dipole motion (dislo-
cation climb) is forbidden as it requires emission of a linear
quadrupole carrying conserved vacancy/interstitial number,
corresponding to local compression of the crystal, i.e., a va-
cancy defect. c) Transverse dipole motion (dislocation glide)
is allowed as it creates a square quadrupole, corresponding
to local shear.

tonic mobility restrictions can be understood in terms of
conservation laws, which include conservation of fracton
charge (

∫
x
ns = constant) and dipole moment (

∫
x
nsx =

constant), as well as enrichment by the global U(1) sym-
metry of atom number conservation. The latter is en-
coded in the relation between diagonal components of
the fracton quadrupole Eij and the vacancy/interstitial
density: ∫

x

nsx
2 − 2nd = constant. (13)

The dipoles can freely move transversely to p (dislo-
cation glide), which corresponds to creation of square
fracton quadrupoles Exy (see Fig. 3), that are not con-
served. However, a dipole’s motion along p (dislocation
climb, transverse to the Burgers vector b) generates lin-
ear quadrupoles, Eii, that corresponds to creation of va-
cancies/interstitials, and is thus forbidden by the global
U(1) symmetry enforcing atom number conservation.
Thus, the subdimensional character of dipoles inside the
FU(1) fracton state is U(1) symmetry-protected. This
provides a concrete example of a symmetry-enriched
fracton phase, in which the mobility constraints become
more restrictive in the presence of a global symmetry.

(ii) The other Coulomb phase of the tensor gauge
theory is a U(1) symmetry-broken fracton state, F ,
that is in the Coulomb phase of the vector gauge the-
ory, corresponding to gapped vortices (condensed vacan-
cies/interstitials), describing a supersolid. This super-
solid fracton Coulomb phase is characterized by coupled
gapless vector, a, and tensor, Aij , gauge fields, with
the action given in Eq.(9). It exhibits immobile frac-
ton charges (disclinations), but unlike FU(1), inside F
the breaking of U(1) symmetry liberates dipoles, p (dis-
locations) to be fully mobile. The FU(1)-F transition be-
tween these two fracton phases is thus driven by global
U(1) symmetry breaking or equivalently by a Coulomb-
to-Higgs phase transition in the associated vector gauge
theory sector.

In addition to the FU(1) and F fracton phases – the
Coulomb (crystalline) phases of the tensor gauge theory
sector – the model (12) also admits several non-fractonic
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states associated with the complementary Higgs phase of
the tensor gauge theory sector. These are driven by con-
densation of dual matter such as dipoles (dislocations)
and fractons (disclinations), corresponding to various
“superconductor” phases of the tensor gauge theory. The
dipole superconductor, SCd, is dual to a super-hexatic
phase, while a fracton superconductor, SCf , corresponds
to the ordinary dual description of a superfluid.38,39,53–58

The presence of condensates in these tensor supercon-
ductors mobilizes the charges, precluding“fracton order.”
A schematic phase diagram is depicted in Figure 1.

Furthermore, as illustrated in Fig.(2), a pair of equal
and opposite dislocations a lattice constant apart, is
equivalent to an atom vacancy (or, in reverse configu-
ration, an interstitial) and thereby carries an atom num-
ber “charge.” Formally, the Hamiltonian thus admits an

operator b̂†bb̂
†
−bâ + h.c., where two dislocations annihi-

late into a vacancy and vice versa. A condensation of b’s
therefore clearly requires atomic off-diagonal-long-range
order. Thus, at zero temperature these non-fractonic
hexatic and isotropic fluid phases of condensed dislo-
cations and disclinations are guaranteed to be super-
fluid. The lack of crystalline order precludes commen-
suration necessary for a Mott-insulator phase of vacan-
cies/interstitials and for the associated vortex conden-
sation. On the dual side, this guarantees that the non-
fractonic Higgs phases of the tensor gauge theory sec-
tor necessarily break U(1) symmetry, and must be in
the Coulomb phase of the vector gauge theory. This in-
terplay between crystalline and U(1) symmetries is the
same as that observed in the context of deconfined quan-
tum critical points between phases with different symme-
try breaking (such as the Néel-VBS transition), in which
defects of one ordered state carry the quantum number
of the other order parameter, allowing for a direct phase
transition outside the Landau-Ginzburg framework.48,49

Similar charge attachment to lattice defects has also been
observed in the context of melting transitions in quan-
tum Hall phases.59

Conclusions. In this work, we have derived a dual hy-

brid vector-tensor gauge theory formulation of a quan-
tum crystal, that accounts for dynamics of atomic vacan-
cies and interstitials. This duality combines the newly
established fracton-elasticity duality4 with conventional
particle-vortex duality1–3 into one “mother” duality, fea-
turing both vector and tensor gauge fields, coupled by
“mutual” axion terms and exhibiting an associated gen-
eralized Witten effect. We thereby establish the exis-
tence of two qualitatively distinct fracton phases, corre-
sponding to a commensurate and incommensurate (su-
persolid) crystals, distinguished by U(1) symmetric and
broken states of atom number symmetry, with the phases
exhibiting fracton charges and, respectively, subdimen-
sional and fully mobile dipoles. A condensation of frac-
ton dipoles provides a gauge dual description of phase
transition into a superhexatic, and vortex condensation
restores U(1) symmetry, confining dipoles to be subdi-
mensional, and thereby drives a transition between F
and FU(1) fracton phases. We leave further exploration
of these and related phases to future studies.

Note: As this manuscript was being completed, we
became aware of a related paper by A. Kumar and A. C.
Potter, which performs complementary work on a similar
topic.60
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