
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Trapped Particle Effects in the Parametric Instability of
Near-Acoustic Plasma Waves

M. Affolter, F. Anderegg, D. H. E. Dubin, F. Valentini, and C. F. Driscoll
Phys. Rev. Lett. 121, 235004 — Published  5 December 2018

DOI: 10.1103/PhysRevLett.121.235004

http://dx.doi.org/10.1103/PhysRevLett.121.235004


Trapped Particle Effects in the Parametric Instability of Near-Acoustic Plasma Waves

M. Affolter,1 F. Anderegg,1 D. H. E. Dubin,1 F. Valentini,2 and C. F. Driscoll1

1Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
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Quantitative experiments on the parametric decay instability of near-acoustic plasma waves pro-
vide strong evidence that trapped particles reduce the instability threshold below fluid models. At
low temperatures, the broad characteristics of the parametric instability are determined by the fre-
quency detuning of the pump and daughter wave, and the wave-wave coupling strength, surprisingly
consistent with cold fluid, three-wave theories. However, at higher temperatures, trapped particle
effects dominate, and the pump wave becomes unstable at half the threshold pump wave amplitude
with similar exponential growth rates as for a cold plasma.

The parametric instability is a fundamental nonlinear
process occurring in a wide-range of physical systems
from solids to liquids to plasmas. Typically, three-wave
couplings are used to predict instability rates, but sys-
tems with near-acoustic wave dispersion exhibit surpris-
ingly stable soliton and cnoidal wave-train solutions in
the continuum limit [1, 2]. In plasmas, the parametric in-
stability has been widely investigated theoretically [3–8],
and has been observed in tokamaks [9–12], non-neutral
plasmas [13–15], high-intensity laser experiments [16, 17],
and other devices [18, 19]. The parametric decay of ion
acoustic waves (IAWs) has been postulated [20–24] as
a possible cause for the saturation of stimulated Bril-
louin scattering observed in high-intensity laser experi-
ments [16, 17, 25–28]. In those experiments, the IAWs
are highly kinetic with a thermal velocity v̄ near the
phase velocity vφ. However, quantitative measurements
are lacking on the stability of near-acoustic waves, and
the influence of kinetic effects on this stability.

Here we measure the parametric decay instability of
near-acoustic plasma waves in a quiescent ion column.
These waves are azimuthally symmetric standing waves
discretized by the axial wavenumber kz = mz(π/Lp).
We investigate the parametric decay of a large ampli-
tude mz = 2 pump wave to a longer wavelength mz = 1
daughter wave, with linear dispersion giving weak detun-
ing ∆ω ≡ 2ω1 − ω2.

Classical three-wave fluid theory [29, 30] predicts expo-
nential growth of the daughter wave amplitude A1 above
a temperature-independent threshold. However, a more
complete multi-harmonic fluid analysis [31] shows general
stabilization, and experiments observe exponential insta-
bility with increasing temperature and wave amplitude,
in broad correspondence with simulations and a new ki-
netic theory [32]. The experiments consistently observe
three different regimes with decreasing pump wave ampli-
tude: 1) strong exponential growth of the daughter wave
at rates similar to three-wave coupling theory; 2) slow
growth of the daughter wave superimposed on amplitude

cycling, probably due to plasma heating; and 3) stable
cyclic oscillations of the daughter wave amplitude, quan-
titatively consistent with the classical three-wave cou-
pling strength.

The new kinetic theory [32] treats wave/particle trap-
ping in the Vlasov continuum framework, and instability
arises from the “negative dynamical compressibility” of
a small distribution of particles weakly trapped between
soliton-like wave peaks. This novel instability mechanism
applies to low-collisionality plasmas supporting waves
with nearly-acoustic dispersion relations such as IAWs,
magnetized Langmuir waves, and Alfven waves. Simu-
lations show that instability ceases if trapped particles
are artificially removed, and the experimentally observed
“slow oscillatory growth” regime is interpreted by this
new theory as an increasing number of particles at the
wave-trapping velocity. Varying the plasma temperature
in the experiments and simulations results in instabil-
ity at lower pump amplitudes as expected from trapped
particle effects.

The experiments are performed on un-neutralized Mg+

ion plasmas confined in a Penning-Malmberg trap. These
plasmas are in a near thermal equilibrium state described
by rigid rotation and a top-hat density profile. Laser di-
agnostics [33] enable radial profiles of the plasma, giv-
ing the plasma radius Rp ∼ 0.5 cm, ion density n0 ∼
2×107 cm−3, on-axis plasma length 12.4 <∼ Lp <∼ 20.3 cm,
and average radial temperature T . The temperature is
controlled over a range 10−3 <∼ T <∼ 0.62 eV through laser
cooling and cyclotron heating on 24Mg+.

In these bounded plasmas, the dispersion relation of
Langmuir waves is near-acoustic because of the shield-
ing from the radial boundary at Rw = 2.86 cm. The
Trivelpiece-Gould (TG) dispersion relation [34] for peri-
odic waves on an infinite-length column is

ω(kz) = ωp
kz√
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z + k2

⊥
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]
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where kz = mz(π/Lp) and ωp is the plasma frequency.
The transverse wavenumber k⊥ is determined by the
boundary condition that the radial wave potential be
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FIG. 1. Measured frequencies of standing TG waves (sym-
bols) for two different plasma lengths on very cold plasmas
with T ∼ 10−3 eV and vφ/v̄ ∼ 90. Solid curves are one
parameter fits to Eq. 1.

continuous at the plasma radius [34]. For our Rw, this
approximately determines k⊥ ∼ 0.9R−1

p + 0.5kz.
The wave phase velocity vφ ≡ ω/kz can be large com-

pared to the thermal velocity v̄ ≡ (T/m)1/2, here rang-
ing over 90 >∼ vφ/v̄ >∼ 3.5. The waves are excited from
a cylindrical electrode near the plasma end, and the re-
sulting charge density perturbation |Am| is detected as a
voltage Vw on a separate electrode, as shown in the Fig. 1
inset. Gauss’s Law directly relates the measured Vw to
|Am| [35], where the linear density eigenfunction of these
standing waves is

Ψm =
1

2
Am(τ)n0e

−iωmt cos(kzz)J0(k⊥r) + c.c. (2)

for a top-hat density profile. Typically, a 40 cycle,
amplitude-rounded sine wave burst excites the pump
wave A2, and the received mode amplitudes are obtained
by fitting the digitized wall signal. The largest bursts
generally heat the plasma by ∆T ∼ 10−2 eV, and non-
Maxwellian energetic tails may be generated below the
1% detection sensitivity of the laser velocity diagnostics.

Figure 1 shows frequency measurements of linear
(|Am| <∼ 1%) TG modes on cold plasmas for two different
plasma lengths. Increasing the plasma length decreases
the mode frequencies 23.8 >∼ ω1/2π >∼ 13.65 kHz, and de-
creases the relative detunings 3.1 >∼ ∆ω/2π >∼ 0.85 kHz.
The solid curves are one-parameter fits to Eq. 1 with the
plasma length as the fit parameter.

Shown in Fig. 2 are the three types of daughter
wave evolutions observed in the experiments: exponen-
tial parametric decay, slow average growth, and detuned
amplitude oscillations. Each plot corresponds to a differ-
ent burst and resulting pump wave amplitude (arrows).
Here, in addition to driving the mz = 2 pump wave,
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FIG. 2. Amplitude evolution of the mz = 1 mode (solid) for
three marginally different mz = 2 amplitudes (dashed) on a
plasma with ∆ω/ω1 = 11.6% and T ∼ 10−2 eV.

we have used a concurrent 5% seed burst to excite the
mz = 1 daughter wave above the noise floor.

The pump wave amplitude directly determines a
nonlinear wave-wave coupling rate defined as Γ0 ≡
|A2|ω1(3R/8), where R ∼ 0.85 is a geometric cou-
pling coefficient. For large pump waves (|A2| >∼ 25%,
Γ0/∆ω >∼ 0.7), Fig. 2a shows the parametric instability.
Initially, the daughter wave amplitude grows exponen-
tially at a rate ΓE = 8400 s−1, phase-locked with the
pump wave. Here, Am(τ) ≡ |Am(τ)| exp(iθm(τ)), and
we observe ∆θ ≡ 2θ1 − θ2 = −0.75π during the expo-
nential growth phase, consistent with simple three-wave
coupling theory. When Amax1 ∼ 0.7Amax2 , the direction
of energy exchange reverses, and the pump and daughter
wave amplitudes proceed to oscillate as the waves ex-
change energy back and forth. At this low temperature
T ∼ 10−2 eV, the wave energy eventually is dissipated
by interspecies collisional drag [36] at a rate γ ∼ 50 s−1.

For moderate pump amplitudes (20% <∼ |A2| <∼ 25%),
we typically observe a slow average growth of the bounc-
ing mz = 1 wave, as shown in Fig. 2b. This slow average
growth rate 〈Γ〉 <∼ 500 s−1 is not predicted by fluid the-
ories. However, RZ kinetic particle-in-cell (PIC) simula-
tions show a similar behavior as particles slowly become
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trapped in the wave potential.
In contrast, for small wave amplitudes (|A2| <∼ 20%,

Γ0/∆ω <∼ 0.5), Fig. 2c shows that the pump wave is
stable. On average the mz = 1 mode amplitude remains
constant with small excursions AB ∝ |A2| with a cycling
rate ωB ∼ ∆ω. This amplitude modulation is a result of
the daughter wave being driven in-and-out of phase by
the pump wave.

Fluid theory [29] characterizes this instability by two
parameters: the scaled pump amplitude Γ0 and fre-
quency detuning ∆ω. This theory keeps the nonlinear
terms in the fluid equations, and uses a two timescale
analysis for the density perturbation

δn = Ψ1(r, z, t) + Ψ2(r, z, t). (3)

This gives the coupled amplitude equations

Ȧ1 = −iXA2A
∗
1e
i∆ωt,

Ȧ2 = −iX(A1)2e−i∆ωt,
(4)

where X = Γ0/|A2| = (3R/8)ω1 is the nonlinear coupling
coefficient. Solving these coupled equations, assuming
A2 � A1 so that Ȧ2 ≈ 0, we find

A1(t) = αe(Γ+i∆ω/2)t + βe−(Γ−i∆ω/2)t, (5)

where Γ =
√

Γ2
0 − (∆ω/2)2, and the constants α and β

are constrained by Eq. 4.
Two different behaviors of the mz = 1 amplitude are

predicted by Eq. 5. For Γ0 > ∆ω/2, Γ is real, and the
daughter wave amplitude is comprised of an exponen-
tially growing and decaying solution. This predicts the
exponential growth rate ΓE = Γ of Fig. 2a. In contrast,
for Γ0 < ∆ω/2, Γ is imaginary, and the daughter wave
amplitude oscillates as shown in Fig. 2c with an ampli-
tude AB = Γ0〈A1〉/(|Γ|+ ∆ω/2) determined from α and
β, and frequency ωB = 2|Γ|. This predicts the oscillatory
coupling rate

ΓOCR ≡
AB
〈A1〉

ωB = Γ0
2|Γ|

|Γ|+ ∆ω/2
. (6)

Figure 3 plots both ΓOCR and ΓE at low tempera-
tures T ∼ 10−2 eV versus the pump wave amplitude |A2|
scaled by ∆ω/ω1 for a 2× range of plasma lengths and
consequent ∆ω/ω1. The fluid prediction depends only
on Γ0/∆ω ∝ ω1/∆ω, so the ∆ω/ω1 scaling enables all
data to be on the same axis. For Γ0/∆ω < 0.4, the
measured ΓOCR (open symbols) is in quantitative agree-
ment with three-wave theory (solid curve) independent
of ∆ω/ω1. For Γ0/∆ω > 0.5, the measured exponen-
tiation rates ΓE (solid symbols) are 10% to 50% lower
than the three-wave fluid coupling prediction. Here, the
daughter wave grows out of noise with a relative phase
∆θ ∼ − arccos(∆ω/2Γ0), and the rate of this exponential
growth is measured by fitting an exponentially growing
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FIG. 3. Measurements of the oscillatory coupling (open sym-
bols) and exponential growth (closed symbols) rates normal-
ized to ∆ω versus the scaled pump wave amplitude for various
∆ω/ω1. Solid black curve is three-wave theory.

sine wave to the digitized wall signal. In general, the
rates ΓE ∼ 3000 − 9000 s−1 are obtained from fits over
5 − 10 cycles of the growing mz = 1 wave, and during
this growth the mz = 2 amplitude is about 20 times the
mz = 1 amplitude. For Γ0/∆ω ∼ 0.5, the experimen-
tal data is ambiguous, often showing slow growth as in
Fig. 2b. The 20% horizontal error bars of Fig. 3 reflect
systematic errors in the conversion of the wave induced
voltage on a ring Vw to the density perturbation |A2|.
The 10% vertical error bars reflect our confidence in the
amplitude fits.

This qualitative correspondence between cold fluid the-
ory and measured ΓE becomes untenable when the fluid
analysis is extended to include nonlinear wave harmon-
ics. For near-acoustic dispersion relations, the pump and
daughter waves are not single sinusoidal oscillations as
three-wave theory assumes, but instead contain multi-
ple space and time harmonics of the fundamental waves.
When these harmonics are included in the instability
analysis, fluid theory [31] predicts that all of the trav-
eling wave eigenmodes of this near-acoustic dispersion
relation are stable to small perturbations, analogous to
the stability of solitary-wave solutions of the Korteweg-
de Vries [37] and Boussinesq [38] equations. In contrast,
for the standing waves of interest in these experiments,
the instability is predicted [31] to be greatly suppressed
but not eliminated by the addition of wave harmonics.

Experiments on warm plasmas further highlight the
disparity from cold fluid theory. Figure 4a shows mea-
surements of the decay instability at four different tem-
peratures with fixed ∆ω/ω1 ∼ 11%. At low temperatures
(vφ/v̄ >∼ 5), the instability threshold is roughly deter-
mined by Γ0/∆ω ∼ 0.6. In contrast, for a plasma with
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FIG. 4. Measurements (a) and simulations (b) of OCR and
exponential growth rates at different plasma temperatures.
The reduction in the instability threshold (arrows) at lower
vφ/v̄ contradicts fluid theories.

vφ/v̄ ∼ 3.5, we observe similar exponential growth rates
as for a cold plasma, but at half the pump wave am-
plitude, i.e. Γ0/∆ω ∼ 0.3. Previous qualitative exper-
iments [15] were suggestive of a temperature dependent
instability threshold, and early experiments reported by
us [39] missed this temperature dependence as those ex-
periments were conducted in a regime (∆ω/ω1 ∼ 18%
and a strong mz = 1 seed) in which the transition from
oscillatory coupling to exponential growth was strongly
obfuscated by the slow average growth regime.

At these higher temperatures (3.5 <∼ vφ/v̄ <∼ 5), par-
ticles become trapped even at relatively small wave am-
plitudes. Although this trapped particle fraction is be-
low the sensitivity for direct laser diagnostics, they are
indirectly observed through nonlinear Landau damping.
Small amplitude waves (|Am| <∼ 0.1%) damp at the lin-
ear Landau rate 8000 >∼ γL >∼ 50 s−1 [36]. Whereas,
at larger wave amplitudes, these resonant particles are
trapped in the wave potential resulting in trapping os-
cillations at a frequency ω2

T ∼ |Am|ω2, and diminishing
the damping rate as the trapped particles phase mix [40].
The large amplitude kinetic pump waves of Fig. 4a have
weak damping γ ∼ 100 s−1, presumably resulting from
collisional repopulation of the plateau in the velocity dis-
tribution.

The observed reduction in the instability threshold of
Fig. 4a is inconsistent with fluid theories, but is in qual-

itative agreement with a new kinetic theory [32], which
predicts exponential growth rates similar to the experi-
ments as due to a small fraction of these wave-trapped
particles. These trapped particles destabilize the wave
because they exhibit negative compressibility. In the
2 → 1 instability, adjacent peaks of the wave train ap-
proach one-another, and therefore recede from the next
peaks. From a fluid perspective, the density and pressure
of particles trapped between approaching peaks would
increase, and would decrease for particles trapped be-
tween receding peaks, producing a restoring force that
stabilizes these modulations. Trapped particles with en-
ergies just below the approaching wave peaks, however,
gain sufficient energy to become passing, and are then
retrapped between receding peaks. The net effect of
these marginally trapped particles is to reverse the sign of
the trapped particle density and pressure change, which
produces a force that amplifies the modulation. The
exponential instability occurs when the trapped parti-
cle fraction is sufficiently large, here estimated to be
fT >∼ 0.1%. This trapped particle mechanism is a gen-
eral phenomenon that could play a role in other nonlin-
ear systems, such as nonlinear IAWs where kinetic sim-
ulations [22, 41] show instability thresholds below fluid
theory predictions.

To further support this trapped particle mechanism, z-
periodic (r,z,vz) drift-kinetic Poisson (squares) and finite-
length, kinetic, RZ PIC (triangles) simulations of the ex-
periments are conducted (Fig. 4b). At the lowest tem-
peratures achievable by these simulations (vφ/v̄ ∼ 8.9),
exponential growth rates consistent with the experiments
are observed. However, it is the trapped particles in these
simulations that cause the instability. If the trapped par-
ticle population is artificially eliminated, the instability
ceases. At higher temperatures, the simulations predict a
lower instability threshold than experimentally observed
for a given vφ/v̄ suggesting that the trapped particle frac-
tion formed in these simulations is larger than that of the
experiments. This discrepancy might be a result of col-
lisions or multispecies effects, which are neglected in the
simulations.

In summary, a small fraction of wave-trapped parti-
cles apparently destabilizes the pump wave, enabling the
exponential growth of longer wavelength waves. Exper-
iments and simulations show stronger growth with in-
creasing plasma temperature and decreasing vφ/v̄. Inci-
sively, the simulations show cessation of instability when
particles near vφ are removed. Detailed measurements of
the particle velocity distribution near vφ will be required
for quantitative comparison to the new theory.
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