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Light shaping facilitates the preparation and detection of optical states and underlies many ap-
plications in communication, computing and imaging. In this work, we generalize light shaping to
the quantum domain. We show that patterns of phase modulation for classical laser light can also
shape higher orders of spatial coherence, allowing deterministic tailoring of high-dimensional quan-
tum entanglement. By modulating spatially entangled photon pairs, we create periodic, topological,
and random patterns of quantum illumination, without effect on intensity. We then structure the
quantum illumination to simultaneously compensate for entanglement that has been randomized by
a scattering medium and to characterize the medium’s properties via a quantum measurement of
the optical memory effect. The results demonstrate fundamental aspects of spatial coherence and
open the field of adaptive quantum optics.

Light shaping is indispensable in many areas of op-
tics. Examples range from the pioneering works of Ga-
bor holography [1] and Zernike phase masks [2] to the re-
cent breakthroughs enabled by spatial light modulators
(SLMs) [3]. Static SLM patterns have led to advanced
pulse shaping [4], super-resolution microscopy [5], and 3D
surface imaging, while dynamic patterns underlie video
projection and adaptive optics. All of these methods can
be used for, and be enhanced by, quantum illumination.
Indeed, wavefront shaping has been used to manipulate
orbital angular momentum modes (OAMs) of quantum
light [6, 7] and to pre-compensate photon scattering in
disordered media [8, 9], but to date structure has been
imposed independently on each photon of an entangled
pair. This restriction was due partly to the use of the
other photon for heralding and partly due to the ex-
traordinary difficulty of measuring higher-order spatial
coherence. The manipulation has therefore been classi-
cal, as there is no substantial difference between shaping
the wavefront of a single photon and that of coherent
light; rather, true quantum control arises from shaping
the correlations within the joint probability distribution.
Here, we consider spatially entangled photon pairs and
experimentally structure second-order spatial coherence
across the entire biphoton distribution function.

Intuition for quantum wavefront shaping follows from
the generalized concept of optical coherence [10]. First-
order coherence of laser light allows intensity shaping
by phase modulation of the angular spectrum. For
second-order coherence, phase modulation acts on the
two-photon wavefunction of spatially entangled photon
pairs, which has repercussions on intensity correlations
(i.e. coincidences) in the reciprocal space. This means
that a given pattern on an SLM can be used to shape both
classical and quantum light, as long as measurements are
performed in their respective region of coherence. This
correspondence is remarkable, as classical methods are
exponentially easier to perform: their signal is higher
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Figure 1. Schematic of the experiment. (a) Spatially
entangled photon pairs are generated by type-I SPDC in
a β-barium borate (BBO) crystal pumped by a collimated
continuous-wave laser at 403 nm. Near-degenerate down-
converted photons are selected via spectral filters (SF) at
806˘ 1.5 nm. Lenses L1 and L2 image the output surface of
the crystal onto the SLM. Pairs of photons are emitted with
respective angles denoted θ1 and θ2. L3 and L4 image the
modulated photons into another optical plane (dashed line),
where a scattering medium can be inserted. L5 forms an
image of the angular spectrum θ “ pθx, θyq of photon pairs
onto an EMCCD camera. The camera enables both direct
and correlation intensity measurements. The thin scattering
medium (b) consists of a layer of Parafilm placed on a glass
microscope slide. Scale bar is 2cm. For clarity, the SLM is
represented in transmission, while it operates in reflection.

and their measurements simpler. Classical control and
feedback are thus exponentially quicker. In practice, op-
timization in the quantum domain can by bypassed, as
quantum signals can piggyback on the classical parame-
ters. The result is classical design for quantum resources,
enabling the highest orders of performance with the low-
est order of wavefront manipulation.

In the experiments, we use a phase-only SLM to con-
trol the phase of spatially entangled photon pairs and
measure its amplitude in the far field (Figure 1). In the
case of perfectly correlated photons [13], programming a
phase pattern φprq tailors the two-photon field Ψ in the
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Figure 2. Structuring entanglement by wavefront shaping. Direct intensity images I (col. 2) and joint probability
distributions Γ (col. 3 and 4) are measured under photon-pair illumination using an EMCCD camera [11, 12]. Without shaping
(a1), anti-correlations in the angular spectrum are visible on a conditional image Γpθ1|θAq (a3) [taken for an arbitrarily chosen
position θA “ p1.6 mrd, 1.1 mrdq] and on the sum-coordinate projection of Γ (a4). A sine phase mask (b1) programmed on
the SLM tailors the spatial structure of entanglement into a comb-like pattern, visible on both the conditional image (b3) and
on the sum-coordinate projection (b4). A helical SLM phase pattern (c1) produces a ring structure in the sum coordinate
projection (c4) with a ring diameter 1.93mrad (green scale bar). The same experiment performed under classical illumination
creates a ring in the direct image (c3) with half the diameter 1.04mrad (white scale bar). All direct images recorded under
quantum illumination (a2,b2,c2) are independent of the programmed phase patterns. Angular unit is mrad.

reciprocal space as

Ψpθ1,θ2q9

ĳ

e2iφprqe´
2π
λ irrθ1`θ2sdr (1)

where θ1 “ k1λ{2π and θ2 “ k2λ{2π and the angu-
lar spectrum (AS) of each photon of a pair, k1 and
k2 their respective momentum and λ their wavelength
(see [14] Section 4). As shown in Figure 1.a, the ex-
perimental setup is built analogously to a conventional
beam shaping system, but the laser is substituted by a
quantum source. Spatially entangled photon pairs are
generated by type-I spontaneous parametric down con-
version (SPDC) in a β-barium borate (BBO) crystal
pumped by a collimated continuous-wave laser at 403
nm. Near-degenerate down-converted photons are se-
lected via spectral filters (SF) at λ “ 806˘ 1.5 nm. The
output face of the crystal is first imaged onto a phase-
only SLM that is itself imaged onto another optical plane
(dashed square), where a thin scattering medium will be
inserted in the second part of this work. One last lens
performs a Fourier transform to map the AS of photons
onto the pixels of an electron-multiplied charge-coupled-
device (EMCCD) camera. The camera allows (a) direct

intensity measurements, providing conventional intensity
images Ipθq, and (b) correlation intensity measurements,
giving the joint probability distribution of photon pairs
Γpθ1,θ2q “ |Ψpθ1,θ2q|

2 [11, 12].

Experimental results are shown in Figure 2. When
no phase modulation is applied on the SLM, it acts as a
mirror, and correlations between photon pairs result only
from momentum conservation imposed by the pair gen-
eration process (Figure 2.a1): when the first photon of a
pair is emitted at angle θ, its twin is generated at the op-
posit angle ´θ. The conditional projection of Γpθ1|θAq,
that represents the probability of detecting one pho-
ton when its twin was detected at θA, shows this anti-
correlation property (Figure 2.a3). When a sinusoidal
phase φpx, yq “ π{2 rcosp2πy{Λq ` 1s (Λ “ 1.2mm) is
programmed onto the SLM (Figure 2.b1), the direct in-
tensity image does not change (Figure 2.b2), but the cor-
relation structure between photons does. In this case,
Γpθ1|θAq takes a comb-like structure centered around
´θA with a period proportional to λ{Λ (Figure 2.b3). A
clearer representation of the data can be given by using
the sum variables θ1 ` θ2. This basis provides a better
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Figure 3. Focusing entanglement through a thin scattering medium. Conditional image Γpθ1|0q measured without the
medium (a) shows an intense probability peak at θ1 “ 0. After insertion of the medium, the peak disappears and is replaced
by a two-photon speckle pattern (b). Programming the optimized phase pattern (c), previously determined using classical
coherent light, allows re-focusing of the entanglement at the output of the medium (d). The shape of the direct intensity image
measured at the output (insets) is not affected by the presence of the medium or by the shaping process.

signal-to-noise ratio by integrating Γpθ1,θ2q along the
diagonal pθ1 ` θ2q, as shown in Figure 2.b4 (sine phase
modulation) and Figure 2.a4 (no modulation) [see [14]
section 2 for more details]. In a last example, a heli-
cal phase pattern φpx, yq “ 3 arctanpy{xq programmed
on the SLM (Figure 2.c1) generates a ring on the sum-
coordinate projection (Figure 2.c4). Interrestingly, the
same experiment performed using classical coherent light
(Figure 2.c3) produces a ring with half the diameter.
This factor of two highlights a fundamental difference be-
tween classical coherence and quantum coherence of pho-
ton pairs, in that the latter accumulate twice the phase
during propagation [15].

Figure 2.c also highlights the fact that knowledge of
the classical wavefront can be used to engineer the ap-
propriate quantum structure. This is of enormous benefit
for adaptive optics, as the measurement-feedback loop in
the quantum case would be practically impossible with-
out it (the Hilbert space is too large, the signal-to-noise
ratio too small, etc). Nevertheless, this field is of growing
importance, e.g. for sending images and secure informa-
tion through turbulence [16, 17]. In Figure 3, we show
a paradigm example of this problem: re-focusing spatial
entanglement that has been randomized by a scattering
medium. In this experiment, a layer of parafilm is in-
serted in an image plane (dashed square) of the setup
(Figure 1). A comparison between conditional images
Γpθ1|0q taken without the medium (Figure 3.a) and after
its insertion (Figure 3.b) shows a loss of the near-perfect
anti-correlations in the AS of photons in favor of a ran-
domly distributed probability pattern called two-photon
speckle [18]. To overcome this speckle, we leverage the
classical-quantum correspondence in Figure 2 and the
well-established techniques of classical wavefront shap-
ing [19] to first determine an optimized phase pattern
using a coherent source that has the same properties than
the photon pairs. This can be done very quickly by inter-
ative optimization on the laser intensity at a given pixel
of the camera [20] (see [14] Section 5). The same pattern
on the SLM is then used to shape the quantum illumina-
tion (Figure 3.c). As shown in Figure 3.d, the conditional
image Γpθ1|θ2 “ 0q measured at the output shows an in-

tense peak of probability, demonstrating the re-focusing
of pairs in coincidence. As before, quantum coherence is
evident in the two-photon field only; the pattern of the
direct intensity image measured at the output is affected
by neither the medium nor the wavefront shaping process
(insets).

The optical pattern on the SLM (Figure 3.c) is tuned
to the scattering medium and gives information about
its complexity. Under classical illumination, keeping the
pattern the same and changing its incident angle sam-
ple a different angular region of the medium. For small
angles, the new scattering paths are similar to the old
scattering paths, and much of the light is still focused;
for larger angles, correlation is lost and a speckle pat-
tern reappears. This range of coherence, known as the
optical memory effect [21], provides fundamental insights
about the medium (e.g. its scattering mean free path and
thickness) and allows imaging though the material [22].
Conventionally, the memory effect is characterized with
classical light by tilting the compensated wavefront (SLM
pattern in Figure 3.c) and measuring the falloff in peak
intensity (see [14] section 5). In our work, we show that a
measurement of this angular range can be obtained from
a single acquisition under quantum illumination. Indeed,
at the first-order, spatially entangled photons are inco-
herent [gp1qpr1, r2q “ δpr1 ´ r2q for perfectly-correlated
pairs] and illuminate the medium with a large angular
spectrum [23]; Consequently, when structuring quantum
light, re-focusing of photon pairs in coincidence occurs
not only at the targeted position (θ2 “ 0) but for larger
angles as well, and the memory effect is thus completely
characterized by a single measurement of the joint proba-
bility distribution. In Figure 4, we show the optical mem-
ory effect visualized along the y-axis (chosen arbitrarily)
by projecting the joint probability distribution onto two
columns of pixels selected symmetrically from the direct
intensity image (θx1

“ ´0.07 mrd and θx2
“ 0.07 mrd).

As shown in Figure 4.c, we observe the presence of a short
anti-diagonal at the center of the image, confirming that
anti-correlations between pairs are maintained by the
wavefront compensation over a finite angular range ∆θy
(in contrast with anti-correlations over the full angular
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Figure 4. Characterization of the optical memory ef-
fect using quantum illumination. The joint probability
distribution of photon pairs is projected onto two columns of
pixels located at θx1 “ ´0.07 mrd and θx2 “ 0.07 mrd on
the direct image (a). Without the scattering medium (b),
Γpθy1 , θy2 |θx1 “ ´0.07, θx2 “ 0.07q shows an intense anti-
diagonal, that reflects the anti-correlation in the angular spec-
trum of photon pairs. With the medium (c), the optimization
technique reconstructs anti-correlations between pairs only in
a limited angular range ∆θy, seen as a reduction of the diago-
nal length. Programming the optimal phase pattern onto the
SLM effectively transforms the thin scattering medium into a
transparent medium but with a limited field of view (d). Fit-
ting the focusing ratio Γpθx1 “ 0, θy|θx2 “ 0,´θyq{Γp0|0q (red
circles) with its corresponding theoretical model (red line)
gives ∆θy “ 1.01 ˘ 0.1 mrd (e). Classical measurement of
the memory effect is represented on the same graph (blue cir-
cle) together with its corresponding theoretical model (blue
line). For clarity, error bars are shown above the graphs.

spectrum observed without the medium in Figure 4.b).

A quantitative analysis performed by fitting the focusing
ratio Γpθx1 “ 0, θy|θx2 “ 0,´θyq{Γp0|0q with a theoret-
ical model derived for the quantum case (see [14] Sec-
tion 6) provides an estimation of the memory effect angle
∆θy “ 1.01˘ 0.1 (Figure 4.e - red curve). A comparison
with a conventional measurement of the memory effect
performed with classical light (blue curve) shows that
the nonlocal sampling of the medium by photon pairs
(Figure 4.d) gives a faster decorrelation.

Deterministic shaping of entanglement is a promising
technique for fundamental physics investigations, such
as triggering of coherent processes in mollecules [24]
and plasmons [25], and manipulating optical states for
quantum storage [26] and processing [27]. It pro-
vides a straigthforward solution for high-dimensional,
entanglement-based quantum communications through
imperfect fibers [28] and turbulence [29]. While our ex-
periment involve only spatial entanglement of photon
pairs, the methods extend easily to higher orders of quan-
tum coherence [30] and to other degrees of freedom, such
as polarization or time [31]. With proper design, adap-
tive quantum optics can optimize systems where quan-
tum light is beneficial and enable systems where con-
trolled entanglement is required.
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