This is the accepted manuscript made available via CHORUS. The article has been published as:

Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200 GeV

A. Adare et al. (PHENIX Collaboration)

Phys. Rev. Lett. 121, 222301 — Published 29 November 2018

DOI: 10.1103/PhysRevLett.121.222301
Pseudorapidity dependence of particle production and elliptic flow in asymmetric nuclear collisions of $p+\text{Al}$, $p+\text{Au}$, $d+\text{Au}$, and $^3\text{He}+\text{Au}$ at $\sqrt{s_{NN}} = 200$ GeV

(Physics Collaboration)
Asymmetric nuclear collisions of $p+$Al, $p+$Au, $d+$Au, and 3He+Au at $\sqrt{s_{NN}} = 200$ GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production $dN_{ch}/d\eta$ in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_2 over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow.
Asymmetric nuclear collisions with a light projectile nucleus striking a heavier target nucleus have proven to be an excellent testing ground for particle production models and the longitudinal dynamics following the initial collision – for an early review see Ref. [1]. Many calculations have successfully described the longitudinal (or rapidity) distribution of produced particles in proton-nucleus (p+A) collisions via the fragmentation of color strings and with counting rules based on the number of “wounded” or struck nucleons or quarks in the projectile and target. Recently, a proposal for testing the wounded-quark model [2] was put forth that specifically called for the measurement of \(dN_{ch}/d\eta\) over a broad range of pseudorapidity in p+Au, d+Au, and \(^{3}\)He+Au collisions [3]. Fully three-dimensional hydrodynamical models also require input on the longitudinal distribution of initial deposited energy and gradients thereof [4]. Once the initial partons or fluid elements are populated, the models evolve the system dynamically. Measurements of elliptic flow as a function of pseudorapidity provide constraints on the longitudinal dynamics of the evolution.

As the incoming hadrons or nuclei break up, the rapidity distribution of liberated partons may be determined by the longitudinal parton distribution functions [5, 6] or via a universal color field breakup for each struck nucleon or quark [7]. For that reason, calculations based on Monte Carlo Glauber models have been developed to calculate the number of struck nucleons and struck quarks (see for example Refs. [8–10]). The PHOBOS collaboration has previously published charged hadron \(dN_{ch}/d\eta\) measurements over \(|\eta| < 5.4\) in d+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV [11]. PHENIX has also published \(dN_{ch}/d\eta\) measurements in high-multiplicity \(3+Au\) collisions at \(\sqrt{s_{NN}} = 200, 62, 39,\) and \(19.6\) GeV [12]. The wounded-quark model has been constrained by the d+Au data and found to be in reasonable agreement with the centrality dependence, while the wounded-nucleon model cannot describe the data [3]. A crucial test of the wounded-quark model is to see if it is universal across different colliding systems. Additional measurements in light and heavy systems at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) can also be tested in this context—see for example different geometry tests in Refs. [13–15].

In \(Au+Au\) and \(Pb+Pb\) collisions at RHIC and the LHC, the created medium is well described by low viscosity hydrodynamics [16, 17]. A host of recent experimental observations indicate that hydrodynamics may also be applicable to the asymmetric collisions of small nuclear systems, e.g. \(p+A, d+Au, ^3He+Au,\) and perhaps even \(p+p\) (for a recent review see Ref. [18]). In heavy ion collisions, the hydrodynamical flow of the medium is characterized via a Fourier decomposition of the final hadron momentum anisotropy in the direction transverse to the incoming beam directions [19] as

\[
\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos[n(\phi - \psi_n)],
\]

where \(n\) is the harmonic number, \(\phi\) is the particle azimuthal angle, \(\psi_n\) is the \(n^{th}\) order symmetry axis, and \(v_n\) is the Fourier coefficient, with \(v_2\) referred to as elliptic flow. The pseudorapidity dependence of \(v_2\) has been measured in \(Au+Au\) and \(Pb+Pb\) collisions at RHIC and the LHC, and the elliptic flow is smaller in regions with smaller final hadron \(dN_{ch}/d\eta\) – see for example Refs. [20, 21]. The data have been interpreted in terms of hydrodynamics and imply a shear viscosity to entropy density, \(\eta/s\), that is temperature dependent [22]. Similar measurements in small nuclear collisions of different sizes are a key test for how local rapidity density relates to hydrodynamical evolution into flow.

In this Letter, we present a comprehensive set of measurements of \(dN_{ch}/d\eta\) and elliptic flow \(v_2\) over a broad pseudorapidity range in \(p+Al, p+Au, d+Au,\) and \(^{3}\)He+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV. The data sets analyzed were recorded in 2014 for \(^{3}\)He+Au, 2015 for \(p+Al\) and \(p+Au,\) and 2016 for \(d+Au\). All data sets were recorded with a minimum-bias trigger that required at least one hit in each of the PHENIX beam-beam counters (BBC). The BBC is composed of two detectors each containing 64 quartz radiators read out with photomultiplier tubes [23]. The BBC covers positive and negative pseudorapidity \(\eta\) with a minimum-bias trigger that required at least one hit in each of the PHENIX beam-beam counters (BBC). The 5% most central events have an average number of participating nucleons of 5.1 ± 0.3, 10.7 ± 0.6, 17.8 ± 1.2, and 25.0 ± 1.6 for \(p+Al, p+Au, d+Au,\) and \(^{3}\)He+Au respectively.
Charged hadrons are reconstructed at midrapidity $|\eta| < 0.35$ with a combination of drift chambers and pad chambers [25]. Midrapidity tracks have their momentum reconstructed via their bend in a magnetic field and are efficiently measured for $p_T > 0.2$ GeV/c. At backward $-3.0 < \eta < -1.0$ and forward $1.0 < \eta < 3.0$ rapidity, the forward-silicon-vertex detector (FVTX) measures the traversal of charged tracks in four detector layers as detailed in Ref. [26]. FVTX tracks are efficiently measured for $p_T > 0.3$ GeV/c, but with no momentum information, because the silicon strips are oriented lengthwise along the magnetic field bend direction.

For the $dN_{ch}/d\eta$ results, the absolute acceptance and efficiency for track reconstruction can be determined with the PHENIX GEANT-3 Monte Carlo simulation. However, in the last years of data taking, the PHENIX experiment had increasingly significant dead regions and run-to-run variations that became challenging to fully account for. Thus, we determine the acceptance and efficiency for a given running period in a control data set by taking the ratio $R(\eta)$ of published PHOBOS $dN_{ch}/d\eta$ to the PHENIX raw $dN_{ch}/d\eta$ as a function of pseudorapidity. The control PHOBOS data sets are Au+Au in 2014 [27], $p+p$ in 2015 [27], and $d+Au$ in 2016 [11] all at $\sqrt{s_{NN}} = 200$ GeV. This “bootstrapping” procedure is described in detail in Ref. [12]. Sources of systematic uncertainty come from varying the track selection cuts, run-to-run variations, and considering high and low luminosity running periods with different double interaction contributions. We also find good agreement within uncertainties comparing results in the FVTX with an absolute acceptance and efficiency calculation and the “bootstrapped” results.

The determination of hadron yields in centrality bins has a known bias effect (see Ref. [24]). In $p+p$ collisions, inelastic events fire the BBC trigger 55 ± 5% of the time, while in events with a n^0 or charged hadron at midrapidity that percentage is larger, 79 ± 2%. This increased trigger efficiency is correlated with a 1.55 times larger BBC multiplicity. This effect results from the diffractive portion of the $p+p$ inelastic cross section disfavoring midrapidity particle production. This bias has been confirmed for midrapidity hadron production down to $p_T \approx 0.5$ GeV/c [28] and for J/ψ measured in the PHENIX muons arms [29], and thus we expect that this bias affects all charged hadrons over the pseudorapidity range studied here. We remove this bias via correction factors that are calculated following the procedure detailed in Ref. [24]. The bias corrections are largest in the smallest system and range from 0.75 ± 0.01 for central 0%-5% $p+Al$ to 0.91 ± 0.01 for central 0%-5% $^{3}\text{He}+\text{Au}$. We apply these bias correction factors to all our $dN_{ch}/d\eta$ results.

![FIG. 1. Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in high-multiplicity 0%-5% central $^{3}\text{He}+\text{Au}$, $d+\text{Au}$, $p+\text{Au}$, and $p+\text{Al}$ collisions at $\sqrt{s_{NN}} = 200$ GeV. Also shown are results in inelastic $p+p$ collisions at $\sqrt{s_{NN}} = 200$ GeV as measured by the PHOBOS Collaboration [27]. Predictions from the wounded-quark [3] and hydrodynamical [4] models are shown. The calculations have an overall normalization factor (S) to best match the data. These factors are S=0.88, 0.93, 0.85, 0.77 for the wound quark model for $p+\text{Al}$, $p+\text{Au}$, $d+\text{Au}$, $^{3}\text{He}+\text{Au}$ respectively, and S=0.81, 0.96, 0.75 for the hydrodynamical model for $p+\text{Au}$, $d+\text{Au}$, $^{3}\text{He}+\text{Au}$ respectively. Figure 1 shows the $dN_{ch}/d\eta$ results for $p+\text{Al}$, $p+\text{Au}$, $d+\text{Au}$, and $^{3}\text{He}+\text{Au}$ at $\sqrt{s_{NN}} = 200$ GeV for the 5% highest centrality bin in the PHENIX small systems.](image-url)
FIG. 2. Charged hadron $dN_{ch}/d\eta$ as a function of pseudorapidity in various multiplicity classes of p+Al, p+Au, d+Au, 3He+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Predictions from the wounded-quark model [3] are shown.

Multiplicity events. Statistical uncertainties are negligible and systematic uncertainties are shown as boxes around the points. The systematic uncertainties are point-to-point correlated and can in principle move the backward, mid, and forward rapidity points separately because they are measured in different detectors. Also shown are the yields in inelastic p+p collisions at $\sqrt{s_{NN}} = 200$ GeV as measured by the PHOBOS Collaboration [27]. The full set of multiplicity-selected results for the four asymmetric nuclear collision systems are shown in Fig. 2.

The results are compared to predictions from the wounded-quark model. Within the wounded-quark model, each wounded-quark is posited to yield hadrons following a common emission function $F(\eta)$ [3]. $F(\eta)$ is constrained by d+Au collision data, and the model then predicts $dN_{ch}/d\eta$ for all collision centralities and systems. The calculations are normalized, with factors listed in the Fig. 1 caption, to best match the data integrated over pseudorapidity, because the exact normalization can be influenced by modest differences in the centrality selection and thus the mean number of wounded quarks. Within the systematic uncertainties on the experimental measurements, the model

FIG. 3. Midrapidity charged hadron $dN_{ch}/d\eta$ per participating quark pair ($N_{qp}/2$) as a function of the number of participating quarks (N_{qp}). Results are shown for p+Al, p+Au, d+Au, and 3He+Au collisions in various multiplicity classes. Also shown are previously published results in p+p collisions from PHENIX [15] and PHOBOS [27]. The line is the best fit to all the data to a constant level.
provides a good description of the complete data set across collision systems and centrality classes. The results are also compared in Fig. 1 with a hydrodynamical calculation [4] for 0%–5% central collisions. The calculation includes Monte Carlo Glauber initial conditions with longitudinal entropy distributions [30], 3+1D viscous hydrodynamics [31] with \(\eta/s = 1/4\pi \) and temperature dependent bulk viscosity, followed by statistical hadronization. Again, the calculations are normalized to the data with factors listed in the caption. The agreement in this case is also good within systematic uncertainties, except for a more significant drop in particle yield in the calculation at the most backward rapidity region \(-3.0 < \eta \lesssim -2.0\).

Midrapidity \(dN_{ch}/d\eta \) per participating quark pair, \(N_{qp}/2 \), scales as a function of the number of participating quarks from \(d+Au \) and \(^3He+Au \) collisions [15]. The previously reported results [15] were not corrected for the modest bias previously discussed. Figure 3 shows the results testing this scaling for all small collision systems, each with the bias correction factors applied. Within the systematic uncertainties, all systems at all centralities follow a common scaling for midrapidity particle production.

In \(d+Au \) collisions, the elliptic flow \(v_2 \) was observed to have a similar pseudorapidity dependence as the particle yield \(dN_{ch}/d\eta \) [12]. For the other systems we have followed the same procedure for measuring elliptic flow \(v_2 \) using the event plane method, where the event plane is defined by the Al- or Au-going BBC covering \(-3.9 < \eta < -3.1\).

The results are corrected using AMPT [32] and a GEANT-3 simulation of the detector to correspond to \(v_2 \) integrated over hadrons at all \(p_T \) within each pseudorapidity bin. Systematic uncertainties are determined by varying the track selection cuts, collision z-vertex cuts, and AMPT input parameters.

![Elliptic flow \(v_2 \) as a function of pseudorapidity in high-multiplicity 0%–5% central \(p+Al, p+Au, d+Au, \) and \(^3He+Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV. Also shown are predictions from the hydrodynamical model [4]. Lastly, the measured \(dN_{ch}/d\eta \) results are shown scaled to match the \(v_2 \) at forward rapidity for shape comparison with the elliptic flow coefficients.](image)

Figure 4 shows the elliptic flow \(v_2 \) as a function of pseudorapidity in 0%–5% central \(p+Al, p+Au, d+Au, \) and \(^3He+Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV. The experimental data have an increasing flow coefficient at forward rapidity when going from the smallest system and smallest particle production \(p+Al \) to the largest \(^3He+Au \). These trends are consistent with arising from the combined influence of initial geometry and particle multiplicity [33]. The \(v_2 \) also increases towards backward rapidity for each collision system. For the lowest multiplicity systems \(p+Al \) and \(p+Au \), there is a sharp enhancement in the \(v_2 \) for \(\eta \lesssim -2.0 \) that is more pronounced in \(p+Al \). This feature may be due to the nonflow contribution of short range correlations, because this is the pseudorapidity range that is within one unit of the BBC used for determining the event plane.

The data are compared with the same hydrodynamical model [4] that gave a reasonable description of the \(dN_{ch}/d\eta \). There is good qualitative agreement with the system and pseudorapidity dependence of \(v_2 \), and good quantitative agreement of its pseudorapidity dependence in \(p+Au \) and \(d+Au \). The only feature not qualitatively described is the enhancement at backward rapidity. This enhancement is the strongest in \(p+Al \), weaker but still pronounced in \(p+Au \), and rather weak in \(d+Au \). The strength of this enhancement trends inversely with the \(dN_{ch}/d\eta \), leading additional evidence that this is due to nonflow influences not incorporated in the hydrodynamical model. In \(^3He+Au \) collisions, the hydrodynamical model overpredicts the forward rapidity (\(\eta > 1 \) \(v_2 \) by more than 50% and qualitatively has the feature of a weaker forward/backward asymmetry than what is present in the data. Note that the model overpredicts
the \(^3\)He+Au \(dN_{ch}/d\eta\) by approximately 25\% (but is scaled to fit the data in Fig. 1), which may help explain the overpredicted \(v_2\).

In Fig. 4, we also scale \(dN_{ch}/d\eta\) to match the \(v_2\) at forward rapidity to compare the shape of the distributions. Although a larger local particle density \(dN_{ch}/d\eta\) is correlated with more elliptic flow, the scaling observed in \(d+Au\) appears only approximate when viewed in the context of all collision systems. It is notable that although not shown in Fig. 4, hydrodynamical model calculations [4] also do not exhibit an exact scaling relation \(v_2 \propto dN_{ch}/d\eta\).

We have presented a comprehensive set of measurements of particle production \(dN_{ch}/d\eta\) and elliptic flow \(v_2\) over a broad pseudorapidity range for a suite of asymmetric nuclear collisions \(p+Al\), \(p+Au\), \(d+Au\), and \(^3\)He+Au at \(\sqrt{s_{NN}} = 200\text{ GeV}\). The particle production is remarkably well-described in the context of the wounded-quark model [3]. A three-dimensional hydrodynamical model qualitatively describes the particle production and elliptic flow in high-multiplicity events in all collision systems. However, it overpredicts the overall \(dN_{ch}/d\eta\) and forward rapidity \(v_2\) in \(^3\)He+Au collisions. These data provide an important constraint on models of the longitudinal dynamics in these asymmetric collisions.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We thank Adam Bzdak and Piotr Bozek for providing theoretical calculations for the suite of collision systems and centralities from the wounded-quark model and hydrodynamical model, respectively. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (UNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

* Deceased

