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Much has been learned about universal properties of entanglement entropies in ground states of
quantum many-body lattice systems. Here we unveil universal properties of the average bipartite
entanglement entropy of eigenstates of the paradigmatic quantum Ising model in one dimension. The
leading term exhibits a volume-law scaling that we argue is universal for translationally invariant
quadratic models. The subleading term is constant at the critical field for the quantum phase
transition and vanishes otherwise (in the thermodynamic limit), i.e., the critical field can be identified
from subleading corrections to the average (over all eigenstates) entanglement entropy.

Introduction. Early studies of entanglement entropies
in the context of black hole physics [1, 2], quantum infor-
mation theory [3], and the quest for efficient simulation
of condensed-matter Hamiltonians [4–6] rose important
questions about the universality of entanglement mea-
sures in quantum many-body lattice systems [7–10]. As
a result, several universal features of the bipartite (block)
entanglement entropy of ground states have been identi-
fied [11–14]. Among others, it was established that, in
local one-dimensional (1D) fermionic systems (and the
spin chains onto which they can be mapped), there is a
one-to-one correspondence between criticality (noncriti-
cality) and logarithmic (area law) entanglement entropy
scaling [14–16]. In critical systems described by confor-
mal field theory, the prefactor of the logarithm is the
central charge [14, 15, 17].

Subleading terms of the entanglement entropy in
many-body ground states can also exhibit universal fea-
tures. This has been of particular interest in two-
dimensional systems. There, a subleading term in the
ground state of quadratic fermionic Hamiltonians scaling
logarithmically or being a constant distinguishes between
critical states with a point-like Fermi surface and noncrit-
ical states, respectively [18]. (In both cases, the leading
term is area law [19–23].) A universal logarithmic sub-
leading term to the leading area law has also been found
in some classes of critical states described by conformal
field theory [24] and in systems with a spontaneously
broken continuous symmetry [25, 26]. In gapped systems
with topological order, a constant correction to the area
law may characterize topological properties [27–29].

In contrast to ground states, much less is known about
the universality (if any) of the entanglement entropy in
excited eigenstates of local quadratic Hamiltonians, or of
models mappable to them. Recent studies have started
exploring the scaling of the entanglement entropy in typ-
ical excited eigenstates of a variety of integrable mod-
els [30–40]. For quadratic Hamiltonians, it has been
shown that typical excited eigenstates exhibit a volume-
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FIG. 1. Entanglement entropy in the quantum Ising model,
Eq. (2), as a function of the transverse field h. The subsys-
tem volume is one half of that of the system (f = 1/2). (a)
Ground-state entanglement entropy Sgs. (b) Average (over
all eigenstates) entanglement entropy density s, defined in
Eq. (5). The horizontal line in (b) depicts the extrapolated
result in the thermodynamic limit.

law scaling. However, they are not maximally entangled
if the subsystem volume is a finite fraction of the total
volume [32, 34, 36, 37]. The deviation from the maximum
is linearly proportional to the volume of the subsystem,
and depends on the ratio between the latter and the vol-
ume of the system. For translationally invariant models,
this was proved by calculating bounds to the average en-
tanglement entropy [37].

The first goal of this Letter is to study the average
eigenstate entanglement entropy of the quantum Ising
model in 1D and explore the universality of its leading
term. The quantum Ising model has been a paradigmatic
model to understand the scaling of ground-state entan-
glement across a quantum phase transition [14, 15, 17,
41–45]. As shown in Fig. 1(a), the ground state entan-
glement entropy diverges at the critical point (the diver-
gence is logarithmic with the block size), while it is a
constant away from criticality. The second goal of this
Letter is to determine the subleading term of the average
entanglement entropy. Intriguingly, we find (numerically
for the average and analytically for its bounds) that the
leading correction is a constant at the critical field while
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FIG. 2. Average entanglement entropy density differences, sqI−sNI, at two subsystem fractions f = 1/2 and 1/4 for: (a) h = 0,
(b) h = 1, and (c) h = 5. Solid lines are fits to the results for L ≥ 24. Note the difference between the x-axes in panels (a) and
(c), 1/L2, vs panel (b), 1/L. Inset in (b), rescaled entanglement entropy density ∆sL = (sqI − sNI)L vs 1/L at f = 1/2 and
h = 1. The line depicts a linear fit A+B/L to the results for L ≥ 24, with A = 0.311 and B = 0.154.

it vanishes away from it (in the thermodynamic limit).
As a result, the average entanglement entropy density in
finite systems [Fig. 1(b)] looks qualitatively similar to the
entanglement entropy of the ground state [Fig. 1(a)].

Model. The quantum Ising Hamiltonian [46] can be
written as

ĤqI = −2J

L∑
j

Ŝxj Ŝ
x
j+1 − h

L∑
j

Ŝzj , (1)

where Ŝx,z are spin-1/2 operators. We use periodic
boundary conditions ŜαL+1 ≡ Ŝα1 . At h = 1, the ground
state exhibits a quantum phase transition between a fer-
romagnetic phase (h < 1) and a paramagnetic one (h >
1). Using the Jordan-Wigner transformation [47, 48],
one can map the quantum Ising model onto a spinless
fermions Hamiltonian (up to a boundary term)

ĤSF = −J
2

L∑
j=1

[
f̂†j f̂j+1 + f̂†j f̂

†
j+1 + H.c.

]
− h

L∑
j=1

f̂†j f̂j ,

(2)

where f̂j (f̂†j+1) is the fermionic annihilation (creation)

operator at site j, and f̂L+1 ≡ f̂1. The Hamiltonian is di-
agonalized via a Fourier transform f̂j = 1/

√
L
∑
k e

ikj f̂k
and a Bogoliubov transform f̂k = ukη̂k − v∗kη̂

†
−k, which

yield ĤqI = −(1/2)
∑
k εk(1−2η̂†kη̂k). The single-particle

energy is εk =
√
h2 + 2hJ cos k + J2 and the coefficients

of the Bogoliubov transform are

uk =
εk + ak√

2εk(εk + ak)
, vk =

ibk√
2εk(εk + ak)

, (3)

where ak = −J cos k − h and bk = J sin k. Many-body
eigenstates |m〉 satisfy N̂k|m〉 = (1−2η̂†kη̂k)|m〉 = Nk|m〉,
where Nk = ±1. Note that the Hamiltonian decouples
in sectors with even and odd number of particles. The

boundary term to Eq. (2) results in periodic (antiperi-
odic) boundary conditions in the odd (even) sector [49].
Following [50], we treat eigenstates in both sectors ex-
actly. We shall contrast the results for the quantum Ising
model to those for noninteracting fermions

ĤNI = −J
L∑
j=1

[
f̂†j f̂j+1 + H.c.

]
, (4)

onto which the spin-1/2 XX chain can be mapped. We
set J ≡ 1 in what follows.
Bipartite entanglement entropy. We are interested in

the von Neumann entanglement entropy of eigenstates
of ĤqI, Eq. (1), for bipartitions of the system into two
blocks of length LA and L−LA. In that case, the entan-
glement entropy Sm in an eigenstate |m〉 of ĤSF, Eq. (2),
is identical to the one in the corresponding eigenstate of
ĤqI. Sm can be computed using the fact that the eigen-

states |m〉 of ĤSF are Gaussian states, i.e., they are fully
characterized by the complex structure [iJ ]A (one-body
covariance matrix), restricted to the subsystem with LA
sites [14, 37, 51]. The latter depends explicitly on uk and
vk. For completeness, in Ref. [49] we write the explicit
expression for [iJ ]A and the corresponding Sm.

The average (over all eigenstates) entanglement en-
tropy is S = 2−L

∑
m Sm, and we define the average

entanglement entropy density as

s =
S

LA ln 2
. (5)

Our goal is to determine s of the quantum Ising model
(sqI) when L→∞ while f = LA/L = const > 0. To this
end, we compare sqI to the corresponding average entan-
glement entropy sNI of the eigenstates of HNI, Eq. (4).
For the latter, it was shown that sNI = 0.5378(1) at
f = 1/2 for L → ∞ [37], with the leading correction
vanishing exponentially with L.
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FIG. 3. (a) Rescaled entanglement entropy density (sqI −
sNI)L vs Γ(h)/(AL) for h < 1. Filled symbols are exact re-
sults (namely, the average over entire Hilbert space with 2L

eigenstates), shown for 22 ≤ L ≤ 32, while open symbols show
averages over 108 random eigenstates for 34 ≤ L ≤ 44. For a
given h, the color of the open symbols is identical to that of the
filled ones. The solid line is the function A [1 − e−Γ(h)/(AL)],
where the constant A = 0.311 (horizontal line). (b) Rescaled
entanglement entropy density (sqI − sNI)L

2 vs 1/L for h < 1.
The symbol coding is the same as in (a), while the solid lines
are linear fits Γ(h) + ζ(h)/L to the exact results for L ≥ 26.
(Inset) The symbols depict the values of Γ(h), multiplied by
(1− h), plotted vs (1− h). The solid line is a fitting function
Γ(h)(1 − h) = α(1 − h)2 + β, with α = 1.234 and β = 1.294.

In the quantum Ising model, we find large finite-size
effects [see Fig. 1(b)] that are inconsistent with a leading
correction decaying exponentially with L. Figure 2 shows
results for sqI, subtracted by sNI, for different values of
h and for subsystem fractions f = 1/2 and 1/4. The
results make apparent that the difference scales as 1/L
at h = 1, while it scales as 1/L2 for h = 0 and 5. Based
on these results, we make the following conjecture:

Conjecture I (Average sqI). The leading correc-
tion to the average entanglement entropy density differ-
ence between the quantum Ising model and noninteract-
ing fermions, for f > 0, scales as

sqI − sNI ∝
{

1/L , h = 1
1/L2 , h 6= 1

. (6)

Numerical test of Conjecture I. We test Conjecture I at
f = 1/2 using the exact average entanglement entropies
calculated numerically for systems with L . 34. As a
first step, we compute the subleading correction at h = 1
with high precision, sqIL = sNIL + A [see the inset in

0 1 2 3 4 5 6
Γ(h)/(AL)

0

0.1

0.2

0.3

(s
q
I
−
s N

I)
×
L (a)

h= 1.02
h= 1.03
h= 1.04
h= 1.05
h= 1.06
h= 1.08

h= 1.10
h= 1.12
h= 1.15
h= 1.20
h= 1.25
h= 1.30

h= 1.40
h= 1.50
h= 1.60
h= 1.80
h= 2.00
h= 2.20

0 0.02 0.04 0.06
1/L

1

2

3

4

5

6

(s
q
I
−
s N

I)
×
L

2

(b)
h= 1.3
h= 1.4
h= 1.5

h= 1.6
h= 1.8
h= 2.0 0 1 2 3 4

h− 1

1

2

[ Γ
(h

)
(h
−

1)
] −1

FIG. 4. (a) Rescaled entanglement entropy density (sqI −
sNI)L vs Γ(h)/(AL) for h > 1. The system sizes and color
coding are identical to the ones used in Fig. 3. The solid line is

the function A [1−e−Γ(h)/(AL)], where the constant A = 0.311
(horizontal line). (b) Rescaled entanglement entropy density
(sqI − sNI)L

2 vs 1/L for h > 1. The symbol coding is the
same as in (a), while solid lines are linear fits Γ(h) + ζ(h)/L
to the exact results for L ≥ 26. (Inset) The symbols depict
the values of Γ(h), multiplied by (h − 1), plotted vs (h − 1).

The solid line is a fitting function
[
Γ(h)(h− 1)

]−1
= ᾱ+β̄(h−

1)e−η̄/(h−1), with ᾱ = 1.028, β̄ = 0.371, and η̄ = 0.629.

Fig. 2(b)] obtaining A = 0.311. In the next step, we
obtain the subleading correction for h < 1 (h > 1) as
sqIL = sNIL + Γ(h)/L [sqIL = sNIL + Γ(h)/L] for all
values of h for which a high precision finite-size scaling
is possible. Examples of such scalings are presented in
Figs. 3(b) and 4(b) for h < 1 and h > 1, respectively. We
find that the functions Γ(h) and Γ(h) diverge at h = 1.
The insets in Figs. 3(b) and 4(b) show fits to Γ(h) and
Γ(h), respectively, in the entire regime of h. The most
important property for the analysis that follows is that
Γ(h)(1− h) and Γ(h)(h− 1) are functions that are both
smooth about h = 1. As a result, limh→1− Γ(h) → ∞
and limh→1+ Γ(h)→∞.

Our main results, following from the previous calcu-
lations, are shown in Figs. 3(a) and 4(a). They reveal
that (sqI − sNI)L is, for finite L, a universal function
of Γ(h)/L for h < 1 and of Γ(h)/L for h > 1. This
uncovers the scaling when L → ∞. Whenever h 6= 1,
limL→∞ Γ(h)/L → 0 and limL→∞ Γ(h)/L → 0, so that
sqI → sNI with a correction that is, at most, O(L−2).

Moreover, the results in Figs. 3(a) and 4(a) allow us to
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dashed-dotted line is a guide to the eye with w3 = 3w1.

identify that the scaling function is close to

(sqI − sNI)L = A
[
1− e−

Γ(h)
AL

]
(7)

for h < 1, and similarly for h > 1 upon replacing Γ(h)→
Γ(h). The functions are shown as solid lines in Figs. 3(a)
and 4(a). They describe both the critical and noncritical
regime of h when L → ∞, namely, (sqI − sNI)L → A if
h = 1 and (sqI − sNI)L→ Γ(h)/L if h 6= 1.
Corollary I. The average entanglement entropy den-

sity of the quantum Ising model in the thermodynamic
limit is sqI = sNI for all values of the transverse field h.
Corollary II. The average entanglement entropy of

the quantum Ising model for L� 1 can be written as

SqI = SNI + δh,1 const.+O(1/L) , (8)

i.e., the subleading term is a constant in the thermody-
namic limit if and only if h = 1.

Analytical results for the bounds. Next, we compute
the exact bounds for the average. We use that: LA ln 2−
〈Tr[iJ]2A〉

2 ln 2 ≤ SqI ≤ LA ln 2− 〈Tr[iJ]
2
A〉

4 [37], where

〈Tr[iJ ]2A〉 = 2LAf −
2

L2

∑
k

4|uk|2|vk|2
sin2(LAk)

sin2(k)
(9)

is the spectral average of the trace of the square of [iJ ]A.
Note that the allowed values of k in the sum are deter-
mined by the boundary conditions in each sector. To
evaluate Eq. (9), we use that 〈Tr[iJ ]2A〉 = (〈Tr[iJ ]2A〉p +
〈Tr[iJ ]2A〉a)/2, where 〈·〉p (〈·〉a) is the spectral average
over all eigenstates for periodic “p” [antiperiodic “a”]
boundary conditions.

Using |uk|2 and |vk|2 from Eq. (3) one gets that, for
h = 1, the addends in the second term of Eq. (9) can be
written as (1/2) sin2(LAk)/[1 + cos(k)], which yields [49]

〈Tr[iJ ]2A〉 = 2LAf − f(1− f) , (10)

i.e., the correction to the volume-law term is a constant.
On the other hand, for h 6= 1, one can set an upper bound
to the second term in Eq. (9) by replacing sin2(LAk) with
1 and |uk|2|vk|2/ sin2(k) with 1/(h− 1)2. This yields

〈Tr[iJ ]2A〉 > 2LAf −
1

L

8

(h− 1)2
. (11)

These results for the bounds are consistent with our nu-
merical results for the average. They also identify a quan-
tity related to SqI, namely, Tr[iJ ]2A, for which the spec-
tral average exhibits a constant correction to the leading
volume-law term only at the critical field.
Universality. Having found that the leading term in

SqI and its first order bounds are identical to the ones
for noninteracting fermions, we conjecture:
Conjecture II (Universality of S). The leading

(volume-law) term in the average entanglement entropy
is identical for all translationally invariant quadratic
fermionic Hamiltonians.
Numerical test of Conjecture II. We replace the coef-

ficients uk and vk of the Bogoliubov transform, Eq. (3),
by functions that are consistent with translational in-
variance (|vk|2 + |uk|2 = 1, uk = u−k, and vk = −v−k).
Results for the average entanglement entropy density sρ
for four such choices of uk and vk are shown in Fig. 5.
Remarkably, in all cases we observe that sρ approaches
sNI. The subleading correction is ∝ L−2, i.e., identical to
the one in the quantum Ising model away from criticality.
Summary and discussion. We argued that the leading

term in the average entanglement entropy of the quan-
tum Ising model is identical to that of noninteracting
fermions, which, in turn, we conjecture is universal for
translationally invariant quadratic fermionic Hamiltoni-
ans. Such models appear to belong to a different “uni-
versality class” when compared to quadratic fermionic
Hamiltonians described by random matrices, for which
the leading term in the average entanglement entropy is
different [40], and to models with extended unit cells, for
which previous numerical work [32] revealed larger aver-
age entanglement entropies than those reported here.

We also studied the corrections to the leading term.
We showed that in the quantum Ising model they allow
one to identify the critical field for the quantum phase
transition. The correction is order one at the critical field
and vanishes otherwise in the thermodynamic limit. The
fact that the correction depends on whether the field is
at the critical value for the quantum phase transition or
away from it is unexpected considering that the average
entanglement entropy is dominated by states in the mid-
dle of the spectrum (at “infinite temperature”). It high-
lights the need for studies of the average entanglement
entropy in other models with quantum phase transitions.
Our results may be of relevance to periodically kicked
Ising systems, for which a divergence of correlation func-
tions was observed in averages over all eigenstates of a
Floquet Hamiltonian at the critical field [52].
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Äquivalenzverbot, Z. Phys. 47, 631 (1928).
[48] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and

M. Rigol, One dimensional bosons: From condensed mat-
ter systems to ultracold gases, Rev. Mod. Phys. 83, 1405
(2011).

[49] See Supplemental Material for the details on the eigen-
state entanglement entropy calculations and the deriva-
tion of Eq. (10).

[50] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in
integrable lattice models, J. Stat. Mech. (2016), 064007.

[51] I. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A 36, L205 (2003).

[52] T. Prosen, Exact time-correlation functions of quantum
Ising chain in a kicking transversal magnetic field, Prog.
Theor. Phys. Suppl. 139, 191 (2000).

http://dx.doi.org/10.1103/PhysRevA.97.023605
http://dx.doi.org/10.1103/PhysRevA.97.023605
http://dx.doi.org/10.1103/PhysRevA.97.023605
http://dx.doi.org/10.1103/PhysRevB.97.245126
http://dx.doi.org/10.1103/PhysRevB.97.245126
http://dx.doi.org/10.1103/PhysRevB.97.245126
http://dx.doi.org/10.1103/PhysRevB.97.245126
http://dx.doi.org/10.1023/B:JOSS.0000037230.37166.42
http://dx.doi.org/10.1023/B:JOSS.0000037230.37166.42
http://dx.doi.org/10.1023/B:JOSS.0000037230.37166.42
http://dx.doi.org/10.1088/1742-5468/2004/12/P12005
http://dx.doi.org/10.1088/1742-5468/2004/12/P12005
http://dx.doi.org/10.1088/0305-4470/38/13/011
http://dx.doi.org/10.1088/0305-4470/38/13/011
http://dx.doi.org/10.1088/0305-4470/38/13/011
http://dx.doi.org/10.1088/1751-8113/40/29/019
http://dx.doi.org/10.1088/1751-8113/40/29/019
http://dx.doi.org/10.1088/1751-8113/40/29/019
http://dx.doi.org/10.1088/1751-8113/40/29/019
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1143/PTPS.139.191
http://dx.doi.org/10.1143/PTPS.139.191
http://dx.doi.org/10.1143/PTPS.139.191
http://dx.doi.org/10.1143/PTPS.139.191

	Volume Law and Quantum Criticality in the  Entanglement Entropy of Excited Eigenstates of the Quantum Ising Model
	Abstract
	References


