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We reveal a one-dimensional topological insulating phase induced solely by gain and loss control in
non-Hermitian optical lattices. The system comprises units of four uniformly coupled cavities, where
successive two have loss, the others experience gain and they are balanced under two magnitudes.
The gain and loss parts are effectively dimerized, and a bulk bandgap, topological transition, midgap
topological edge and interface states in finite systems can all be achieved by controlled pumping.
We also clarify non-Hermitian topological invariants and edge states in gapless conditions.

Controlling optical properties with external signals is
a major destination in photonics research [1], and it is
largely associated with tailoring the refractive index. Re-
cent studies have revealed that the imaginary part of
the refractive index, namely gain and loss, can do much
more than just tuning the optical intensity. The key con-
cept, parity-time (PT ) symmetry [2, 3], was introduced
for obtaining real spectra of quantum systems with non-
Hermitian components. Its analogy in optics [4, 5] cor-
responds to complex refractive index profiles with sym-
metric real parts and antisymmetric imaginary parts, i.e.
n(r) = n∗(−r). Such a system can show an exceptional
point (EP) [6] where its eigen-detuning sharply changes
from real to imaginary values [7, 8] (spontaneous PT
symmetry breaking). There are many interesting phe-
nomena related to PT symmetry including power oscil-
lation [4, 9], double refraction [4, 10], Bloch oscillation
[11, 12], mode-locking [13], coherent absorption [14–16],
fast light [10, 17, 18], and unidirectional reflectivity [19–
21]. Furthermore, nonlinearity-induced isolation [22, 23],
single-mode lasing [24, 25], and beam steering [26] were
achieved under controlled pumping.

To widen the scope of non-Hermitian optics [27, 28],
there are growing attempts to incorporate topological
features to photonic systems with gain and loss. While
Hermitian photonic topological phases [29–31] are based
on celebrated discoveries such as the quantum Hall effect
[32, 33] and topological insulators [34, 35], non-Hermitian
topological optics originates from the theoretical ques-
tion as to whether or not stable topological quantum
states exist in non-Hermitian systems [36–40]. For pho-
tonics based on classical electromagnetic waves, however,
it has been clarified that there exist topological states
even when their eigenvalues are not real [41]. Researchers
applied Su-Schrieffer-Heeger (SSH) photonic lattices [42]
with relevant loss and experimentally confirmed their
topological interface states [43] and topological transi-
tion [44]. Moreover, a photonic topological bound state
with global PT symmetry was observed [45]. Even the

lasing of such topological modes has recently been shown
to be feasible [46–49].

Then, another question may arise. Can we create

a topological insulating phase solely from gain and loss

control? In previous studies of non-Hermitian optics,
the emergence of nontrivial topologies was attributed to
Hermitian factors, namely the magneto-optic effect [49],
and lattice and coupling profiles of host systems [37, 50–
53]. Even though such systems are armed with non-
Hermiticity, they take over original Hermitian topolog-
ical characters predetermined by fabrication. Moreover,
gain and loss in conventional non-Hermitian systems
[27, 28, 54] only close frequency bandgaps. Thus, they
were considered to destroy topological insulating phases.
In contrast, our aim is to generate a topological bandgap
solely by adding static gain and loss to a topologically
trivial structure. Then, achieved topological features, in-
cluding a well-defined topological number, should origi-
nate purely from non-Hermitian factors. Here, the gain
and loss are readily tunable by multi-channel current in-
jection or properly masked optical pumping in various
laser systems [18, 26, 46–48]. We will hence have full
manipulability over the topological properties in optical
circuits, such as a topological transition, and the number
and position of topological states, simply by changing the
gain and loss.

Here, we show theoretically a one-dimensional pho-
tonic lattice with the gain- and loss-induced reconfig-
urable topological insulating phase. We consider unit
cells of four uniformly coupled resonators, with loss in-
troduced into two successive cavities and gain introduced
into the other two. The system then forms a pair of
dimers by effective decoupling between cavities with gain
and loss. This can result in a bulk bandgap, topologi-
cal transition and midgap edge states for a wide range
of parameters. Topological interface states can also be
achieved at a controlled boundary between the nontriv-
ial and trivial lattices. Our scheme is unique in non-
Hermiticity-basedmidgap topological states protected by
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their isolation from bulk states. Although, we also clar-
ify system topological features in non-Hermitian gapless
conditions, which will be relevant with defect and edge
states in gapless systems [37, 55–59].
Theoretical model.– The system comprises periods of

four single-mode cavities with uniform couplings κ [Fig.
1 (a)]. We introduce an on-site imaginary potential pro-
file (ig1,−ig2,−ig1, ig2) to the cavities, where its positive
and negative coefficients mean gain and loss, respectively.
Here, we assume that κ, g1 and g2 are sufficiently small
compared to the cavities’ resonant frequency ω0 and the
cavity-mode Q-factor is high, so that we can safely ne-
glect the effect of the imaginary index profile and ra-
diation loss on κ, as expected in semiconductor lasers
[18, 22, 23, 25, 26, 46–48, 60]. Within the linear analy-
sis, the coupled mode equation describing the system is
equivalent to the Schrödinger equation i∂t |Ψ〉 = Ĥ |Ψ〉,
where |Ψ〉 = ({Ψn})T is the vector of the slowly-varying
complex cavity-mode amplitudes (n: cavity index) and
Ĥ is a tight-binding lattice Hamiltonian. Considering the
Bloch theorem and a dynamical factor e−iωt, the analysis
reduces to an eigenvalue problem for the four-component
eigenvector |ψB〉 under the Bloch Hamiltonian Ĥ(k),

Ĥ(k) =









ig1 κ 0 κe−ika

κ −ig2 κ 0
0 κ −ig1 κ

κeika 0 κ ig2









, (1)

where a is the spatial interval between the four-cavity
units and k is the Bloch wavenumber. The eigenfre-
quency detuning ω(k) with reference to ω0 is given by,

ω(k) = ± 1√
2

√

A±
√

A2 −B2 − 16κ4 sin2
ka

2
, (2)

where A = 4κ2 − g21 − g22 and B = 2g1g2. We also find
analytic forms of |ψB,s〉 (s: eigenstate index), which are
given in Supplementary Materials [61]. In the following
analysis, the gain and loss are measured with respect to
the cavity coupling, i.e. κ = 1. We focus on the case
where g1 > 0 and g1 ≥ |g2| for studying the bulk proper-
ties, because the spatial and/or time reversal can map the
system with this condition to that with the other param-
eter range. When g1 = g2 = 0, the system has a gapless
four-fold cosinusoidal band structure with a degeneracy
at ω(0) = 0, because of the reduced first Brillouin zone
[Fig. 1 (b)].
The system band structure is classified into five pat-

terns via the value of the inside of the double radical
sign of Eq. (2) for k = 0 [Fig. 1 (c)]. With g1, g2 ≥ 0 for
simplicity, the divided phase regions are, (I) B = 0, (II)
A+B > 0, A−B ≥ 0, (III) A+B > 0, A−B < 0, (IV)
A+B ≤ 0, A2−B2−16κ4 < 0 and (V) A2−B2−16κ4 ≥ 0.
Here, the phase boundaries are symmetric to g1 = g2.
The systems in phase (II) and (III) have complete fre-
quency bandgaps, while those in phase (I), (IV) and (V)
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FIG. 1. (Color online) (a) Schematic of considered system.
Upper and lower lattices for g2 > 0 and g2 < 0 are topolog-
ically nontrivial and trivial, respectively. (b) Folded cosinu-
soidal band structure for g1 = g2 = 0. (c) Phase diagram for
the system band structure. κ = 1, g1, g2 ≥ 0.

are gapless. System band structures for phase (IV) and
(V) are shown elsewhere (Fig. S1 [61]). Note that the
diagram for g2 < 0 is obtained by the mirror inversion of
Fig. 1 (c) with regard to g2 = 0.

We see from Eq. (2) that ω(k) is real as long as A > 0
and A2−B2−16κ4 sin2(ka/2) > 0. Such real eigenvalues
are obtained because Ĥ(k) has a pseudo-Hermiticity [62],
Ŝ(k)Ĥ(k)Ŝ(k) = Ĥ†(k). Here, the k-dependent linear
operator Ŝ(k) = Ŝ(k)−1 = σ̂x⊗ (cos k

2
)Î2+ σ̂y⊗ (sin k

2
)Î2

means a half-period translation. σ̂x,y,z are Pauli ma-

trices and Î2 is the 2×2 identity matrix. The pseudo-
Hermiticity guarantees an associated antilinear symme-
try [63]. Although the system does not respect PT sym-
metry, the bulk antilinear symmetry can instead give at
least partially real spectra by balancing net gain and loss.
Meanwhile, the operation to which Ĥ(k) shows the in-
variance is implicit due to its complexity.

Ĥ(k) also satisfies a pseudo-anti-Hermiticity [36, 37,
61], Ĥ(k) = −η̂Ĥ†(k)η̂, where η̂ = Î2 ⊗ σ̂z =
diag(1,−1, 1,−1) and η̂−1 = η̂† = η̂ in our model. It is
known that this symmetry can lead to a nontrivial topol-
ogy via chirality in terms of pairwise eigenvalues, ω(k)
and −ω∗(k). Since η̂ is local (diagonal), the resultant
topological protection covers all the system parameters.
We notice that the symmetry is equivalent to a particle-
hole symmetry, −Ĥ(k) = η̂Ĥ∗(−k)η̂.
Bulk properties.– Figure 2 shows the real and imag-

inary band structures and eigenmode distributions for
different g1 and g2 values. When g1 < 2 and g2 = 0
[phase (I) with A > 0], Dirac-like dispersion in Reω(k)
[Fig. 2 (a)] appears around ω(0) = 0, with cancelled net
gain and loss [Imω(k) = 0, Fig. 2 (b)]. This implies
a topological transition point and reflects the antilinear
symmetry. The gapless feature is attributed to B = 0 in
Eq. (2). The band structure also has two EPs meaning
the spontaneous antilinear symmetry breaking. The in-
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tensity distributions for |ψB,s〉 [Fig. 2 (c)] show that the
fields are evenly distributed in the gain and loss cavities
(n = 1, 3) before this transition (k = 0.05π/a), while the
eigenmodes with the broken symmetry (k = 0.95π/a) ex-
hibit localization at either of them, and hence complex
ω(k). Note that g1 > 2 and g2 = 0 [phase (I), A < 0] give
a Dirac cone in Imω(k), with a degeneracy at ω(0) = 0
(Fig. S1 [61]).

For g1, g2 6= 0 under phase (II), a bandgap opens due to
B2 > 0 [|g2| ≤ 2κ−g1, Fig. 2 (c)], while the real eigenval-
ues remain around k = 0 [Fig. 2 (d)]. Here, the effective
couplings between gain and loss cavities become weaker

than that between the two gain cavities and that between
the loss cavities [61], as anticipated from the mode local-
ization by PT symmetry breaking [7, 8, 27, 28]. This
decoupling results in dimerization of the successive cavi-
ties with gain and those with loss [61].

Bulk mode patterns in the insulating conditions con-
firm this non-Hermitian effect. Before crossing the EPs in
phase (II), the eigenmodes spread over the entire unit cell
to cancel the net gain and loss for real ω(k) [k = 0.05π/a,
Fig. 2 (f)]. After the symmetry breaking, however,
they eventually turn into couples of states with local-
ization at the gain cavities (n = 1, 4) and loss cavities
(n = 2, 3) for complex ω(k) (k = 0.95π/a). In phase
(III) (|g2| > 2κ− g1), the complete antilinear symmetry
breaking makes the pairs of upper and lower real bands
overlap and gives the split imaginary bands [Fig. 2 (g),
(h)]. Thus, only the dimerized eigenstates are allowed all
over the Brillouin zone [Fig. 2 (i)]. Here, reversing the
signs of g1 and g2 does not affect the band structure [Eq.
(2)], while a topological transition between systems with
g2 > 0 and g2 < 0 is expected at the gap closing with
ω(0) = 0. The non-Hermiticity-based bandgap broadens
continuously as (g1, g2) gets toward the inside of phase
(II) and (III) from their boundaries (Fig. S2 [61]).

We introduce the normalized global Berry phase [64] in
k-space, W =

∑

s
i
4π

∮

dk〈〈ψB,s| ∂k |ψB,s〉 (s = 1, . . . , 4),
as our topological number. W denotes the topologi-
cal feature of the entire system [65], thus it resolves
the problem that the Zak phase [66] of each band
is not discretized in non-Hermitian systems with EPs.
Here, |ψB,s〉〉 is the left eigenstate that forms a dual-

ity with |ψB,s〉, namely Ĥ(k) |ψB,s〉 = ω(k) |ψB,s〉 and

Ĥ†(k) |ψB,s〉〉 = ω∗(k) |ψB,s〉〉 [67]. The biorthonor-
mal basis ({|ψB,s〉}, {|ψB,s〉〉}) enables the normalization
〈〈ψB,s|ψB,t〉 = δs,t and the extraction of pure geometric
phases from non-Hermitian eigenvectors. W also reflects
the 4π periodicity of the eigenvectors [52, 61]. We ob-
tain integer values of W = 1 for g2 > 0 and W = 0 for
g2 < 0, under g1 > 0 (Fig. S3 [61]). W hence confirms
the non-Hermiticity-induced nontrivial photonic topol-
ogy and topological transition between the two condi-
tions in Fig. 1 (a). Interestingly, the discrete change in
W holds in the gapless phases, (IV) and (V). We discuss
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FIG. 2. (Color online) Band structures and mode pat-
terns of system for different gain and loss profiles. κ = 1.
(a) Reω(k), (b) Imω(k) and (c) |ψB,s,n|

2/ 〈ψB,s|ψB,s〉 for
g1 = 1, g2 = 0, phase (I). (d) Reω(k), (e) Imω(k) and
(f) |ψB,s,n|

2/ 〈ψB,s|ψB,s〉 for g1 = 1, g2 = 0.5, phase (II).
(g) Reω(k), (h) Imω(k) and (i) |ψB,s,n|

2/ 〈ψB,s|ψB,s〉 for
g1 = 2, g2 = 1, phase (III). s and n: eigenstate and cav-
ity indices.

a geometric picture of W , which is based on coupling
parameters relevant with dimerization and can illustrate
the topological transition of both the SSH and our model,
in Supplementary Materials [61] (Fig. S4 and S5).

Edge states.– Figure 3 shows the topological edge
states in our finite systems with 40 cavities for g1 >
0, g2 > 0. Here, there is relatively weaker effective cou-
pling between gain and loss cavities at each edge [Fig. 3
(a)], like the edge-state generation condition in the Her-
mitian SSH model [42, 50]. Displayed eigenfrequencies
show a pair of midgap states for both phase (II) [Fig. 3
(b)] and (III) [Fig. 3 (d)]. For Fig. 3 (d), we consider
an offset absorption potential iγ for every cavity, which
only shifts all the eigenfrequencies by iγ and cancels Imω
of a midgap state. Each eigenmode with Reω = 0 is lo-
calized at the left or right edge. Their Imω reflect the
imaginary potential around the relevant edge cavities. A
remarkable difference is whether the localization is unit-
based [phase (II), Fig. 3 (c)] or cavity-based [phase (III),
Fig. 3 (e)], corresponding to whether the bulk without
the imaginary offset is in the exact phase [Imω(0) = 0] or
broken phase [Imω(0) 6= 0]. In phase (III), a topological
edge mode has the largest Imω and can be the only state
that oscillates (Imω = 0) via the loss offset, γ < 0 [Fig.
3 (d)]. Note that the edge states are also found when
each side is terminated by a loss cavity (g1 < 0, g2 < 0).
However, they disappear if a cavity on one edge has gain
and one on the other undergoes loss (g1g2 < 0), as indi-
cated by W = 0. In Supplementary Materials [61], we
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FIG. 3. (Color online) (a) Illustration of our finite non-
Hermitian topological lattice. (b), (d) Sorted and selected
real eigenvalues for forty-cavity systems. Insets: correspond-
ing imaginary eigenvalues. Squares: topological edge states.
(c), (e) Intensity distributions for the edge states. (b), (c)
g1 = 1, g2 = 0.5, γ = 0. (d), (e) g1 = 2, g2 = 1, γ ∼ −1.569.

show detuned edge states for g1 = g2, striking robust-
ness of the edge states to disorder, and edge states in the
gapless phases (Fig. S6, S7, S8 and S9).
The topological vortex charge of non-Hermitian bulk

eigen-detuning [57], V = 1
2π

∫

∂kArg[ω(k)]dk, can be
evaluated for our model [61]. Here, finite fractional
charges V = ±1/2 are found around two degenerate EPs
with ω = 0 in the gapless phase (IV) [Fig. S10 (a)]. They
indicate anomalous edge states with non-Hermitian chi-
rality emerging at Reω = 0, and such states are com-
patible with both the topologically nontrivial (W = 1)
and trivial (W = 0) systems. In phase (V), V = ±1/2
is held by each eigenstate of the non-Hermitian flatband
with Reω = 0 [Fig. S10 (b)].
We can discuss the origin of the topological edge states

with a particle-hole symmetry [68] equivalent to our
pseudo-anti-Hermiticity. Because our lattice Hamilto-
nian Ĥ with a finite number of cavities and the open
boundary condition is a symmetric matrix (Ĥ = ĤT),
its global pseudo-anti-Hermiticity, Ĥ = −η̂′Ĥ†η̂′, eas-
ily reduces to a particle-hole symmetry, −Ĥ = η̂′Ĥ∗η̂′.
Here, η̂′ = diag(1,−1, 1,−1, . . . , 1,−1, 1,−1) is again lo-
cal, η̂′−1 = η̂′† = η̂′ and Ĥ∗ is the complex conjugate of
Ĥ. It indicates that the number of states with Reω = 0
at each edge can change only by two [69, 70]. Thus, a sin-
gle isolated edge state with Reω = 0 on each side, based
on (1, 0, 0, . . . , 0)T and (0, . . . , 0, 0, 1)T for g1 = g2 = 0, is
topologically protected by this symmetry under proper
bandgap-opening conditions [71].
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FIG. 4. (Color online) (a) Interface between topologically
nontrivial (left) and trivial (right) lattices, with 20 cavities
for each. (b) Sorted and selected Reω of the system. Inset:
corresponding Imω. Left and right squares: eigenvalues for
topological interface and edge states. (c) Intensity profiles for
the interface (upper) and edge (lower) modes. g1 = 1.5, g2 =
3, γ ∼ −2.526.

Interface states.– We apply our non-Hermitian scheme
for a controllable midgap topological interface state (Fig.
4). Here, we prepare butting of topologically nontrivial
and trivial lattices, effectively forming an “long-long de-
fect” at their boundary, as in an SSH system [72] [Fig.
4 (a)]. Both lattices are adjusted to be in phase (III),
and larger gain is applied to the interface cavity of the
nontrivial array, than its edge (g2 > g1). In consequence,
a topological interface state with Reω = 0 and strong
boundary localization obtains the largest Imω as the
abovementioned edge state. Including a global loss bias
iγ, we can hence expect single-mode lasing (Imω = 0) of
such a state. The system eigenfrequency profile [Fig. 4
(b)] confirms a pair of midgap states and cancellation of
Imω in one of them. The intensity distributions of the
eigenmodes with ω = 0 and Reω = 0, Imω < 0 certainly
indicate topological interface and edge states confined at
the right (n = 20) and left (n = 1) sides of the non-
trivial lattice, respectively [Fig. 4 (c)]. A topological
bound state with global PT symmetry, which systemati-
cally satisfies Reω = Imω = 0, can also be demonstrated
(Fig. S11 [61]).
In conclusion, we have shown that the topological

insulating properties of the one-dimensional resonator
array can be controlled by the gain and loss. Our
scheme is experimentally feasible by modifying the ex-
isting laser arrays [46–48] and valid for coupled waveg-
uides [44, 45]. Moreover, it can be explored as an exten-
sion of PT -symmetric systems in photonics [10, 18, 22–
26, 43], phononics [73–75], and circuit electronics [76, 77].
It would pave the way for various possibilities of non-
Hermitian topological photonics, such as reconfigurable
lasing modes, non-Hermiticity-based topological pump-
ing [41, 78], superstructures [79] and Floquet systems
[40, 80]. Developing the topological controllability in two
dimension is another important direction.
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[51] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133
(1980).

[52] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[53] G. Q. Liang and Y. D. Chong, Phys. Rev. Lett. 110,

203904 (2013).
[54] H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327



6

(1972).
[55] S. Malzard, C. Poli, and H. Schomerus, Phys. Rev. Lett.

115, 200402 (2015).
[56] H. Zhao, S. Longhi, and L. Feng, Sci. Rep. 5, 17022

(2015).
[57] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and

F. Nori, Phys. Rev. Lett. 118, 040401 (2017).
[58] B. Qi, L. Zhang, and L. Ge, Phys. Rev. Lett. 120, 093901

(2018).
[59] M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Nat.

Commun. 9, 1308 (2018).
[60] J. K. S. Poon and A. Yariv, J. Opt. Soc. Am. B 24, 2378

(2007).
[61] See Supplementary Materials for the system gapless

phases, bulk symmetry, effective decoupling, bandgap
opening, topological number and its geometrical picture,
possible finite size effects, robustness of the topological
edge states, chiral edge states in gapless phases, vortex
charges of eigendetuning with band coalescence, and non-
Hermiticity-based topological bound state with PT sym-
metry, which include Ref. [81–88].

[62] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).
[63] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002).
[64] S.-D. Liang and G.-Y. Huang, Phys. Rev. A 87, 012118

(2013).
[65] Y. Hatsugai, J. Phys. Soc. Jpn. 73, 2604 (2004).
[66] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[67] F. Keck, H. J. Korsch, and S. Mossmann, J. Phys. A:

Math. Gen. 36, 2125 (2003).
[68] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W.

Ludwig, New J. Phys. 12, 065010 (2010).
[69] D. I. Pikulin and Y. V. Nazarov, JETP Lett. 94, 693

(2012).
[70] D. I. Pikulin and Y. V. Nazarov, Phys. Rev. B 87, 235421

(2013).
[71] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002

(2002).

[72] A. Blanco-Redondo, I. Andonegui, M. J. Collins,
G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton,
and M. Segev, Phys. Rev. Lett. 116, 163901 (2016).
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