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Using molecular simulations on model polymer nanocomposites at fixed filler loading we show that
interfacial polymer dynamics are affected less with decreasing nanoparticle (NP) size. However, the
glass transition temperature Tg changes substantially more for extremely small NP. The reason for
this apparent contradiction is that the mean NP spacing decreases with decreasing particle size.
Thus, all polymers are effectively interfacial for sufficiently small NP, resulting in relatively large Tg

shifts. For larger NP, interfacial relaxations are substantially slower than the matrix for favorable
NP-polymer interactions. The minority “bound” polymer dynamically decouples from the polymer
matrix, and we only find small changes in Tg relative to that of the bulk polymer for large NP.
These results are used to organize a large body of relevant experimental data, and we propose an
apparent universal dependence on the ratio of the face-to-face distance between the NPs and the
chain radius of gyration.

Adding nanoparticles (NPs) to polymers is known
to substantially alter mechanical, electrical, and optical
properties [1–8], especially relative to traditional com-
posites with micron scale additives [9–11]. Since these
property improvements are driven by the NP surface-to-
volume ratio, it is expected that NP size plays a cen-
tral role in this context. Previous theories suggest that
good NP dispersion, which is sometimes desirable [12–
15], requires moderately favorable polymer-NP interac-
tions. Even here a “bound” polymer layer, with relax-
ation times that are orders of magnitude slower than the
surrounding bulk-like polymer matrix [16–19], naturally
forms. Long polymer chains that make multiple con-
tacts with a surface can make the polymer adsorption
effectively irreversible. While the number of contacts is
proportional to

√
N for chains of length N at a flat sur-

face [20], it is smaller for more curved surfaces; thus, we
expect that the temporal persistence of the bound layer
should become weaker for smaller NPs. However, as we
go to smaller NPs, the fraction of polymer chains inter-
acting with a surface increases. The interplay between
these two facts is an unresolved question that we shall
focus on in this work.

Many experiments report little or no change of Tg for
strongly interacting NPs with diameter & 10 nm. Sim-
ulations suggest that a bound interfacial layer dynami-
cally decouples from the surrounding polymer matrix in
these situations [21]; since the matrix polymer dominates
the observed behavior, there is relatively little observed
change in Tg. In contrast, for small NP (≈ 1 nm), exper-
iments imply that there are large Tg shifts [22]. How NP
size effects manifest themselves on dynamic phenomena
such as the glass transition temperature Tg is then the
second focus of the current paper.

Using molecular dynamics simulations we find that the
effects of NPs on interfacial relaxation diminish with de-
creasing NP size (at fixed loading). However, the de-
creasing NP size leads to an increase in the fraction

of interfacial polymer. Consequently, for small enough
NP, the polymer chains are effectively all interfacial. In
this limit, the previous simulation results for larger NPs,
which showed a decoupling of interfacial dynamics from
that of the matrix, does not apply. This effect makes
the Tg of the composite more sensitive to NP interac-
tion strength for smaller NP sizes. This finding helps
to explain the recent experimental work by Sokolov [22]
and co-workers, who observe substantial effects on Tg for
small NP.

We model an ideal, uniform dispersion of NPs within
a polymer matrix (earlier works provide more details [21,
23]). The Kremer-Grest bead-spring model is used [24],
with each chain comprised of 20 monomers of diameter σ.
Non-bonded monomers interact via the Lennard-Jones
(LJ) potential truncated and shifted beyond rc = 2.5σ.
Bonded monomers are linked by a finitely-extensible non-
linear elastic (FENE) potential. A collection of beads
(identical to the monomers of polymer chains) are linked
to form an icosahedral NP with specified size. A single
NP is held fixed at the center of the simulation box sur-
rounded by polymer chains with an NP filling fraction
φ = 0.042; given the periodic boundary conditions, this
corresponds to ideal dispersion of NP. Since the parti-
cle does not move in the simulation, the role of particle
motion is not explored. We will focus on this topic in
future work. We study three different NP sizes that con-
sist of 356 beads, 104, or 12 beads, which correspond to
an icosahedron with edge length a = 6.6σ, 4.4σ or 2.1σ,
respectively. This size can be converted to the diameter

of an inscribed sphere following d =
√
3
6 (3+

√
5)a, result-

ing in d = 10.0σ, 6.6σ, and 3.3σ, respectively. To model
the interaction between the NP and polymers, we use
an attractive LJ interaction, also truncated and shifted
with rc = 2.5σ. We systematically vary the polymer-
NP interaction strength over 0.1 ≤ ε ≤ 3.0, where ε
is defined relative to the polymer-polymer interactions.
Simulations are performed in an NVT ensemble along
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an isobaric path at pressure P = 0.1 for temperatures
ranging from 0.40 to 0.80, in units of polymer-polymer
interactions.

We first address how the NP size affects segmen-
tal relaxation and glass formation, and the formation
of a bound layer near the NP surface using the self-
intermediate scattering function

Fself(q, t) =
1

N

〈
N∑
j=0

eiq·(rj(t)−rj(0))

〉
(1)

where rj(t) is the position of monomer j at time t, and
q is the wave vector. Following convention, we present
results for q0 ≈ 7, the location of the primary peak in
the monomer structure factor.

We quantify the spatial gradient of relaxation by cal-
culating Eq. 1 conditioned on the radial distance r of
a monomer from the NP at the time origin. Since
monomers typically move only a fraction of a diameter
over the relaxation time of Fself(q, t), it does not matter
whether we condition the position based on its starting
value, or the position after one relaxation time. As shown
previously [21], the relaxation near the surface is quali-
tatively different for weak versus strong polymer-NP in-
teractions; namely, relaxation is enhanced near a weakly
interacting substrate, and slowed (by several orders of
magnitude) at the strongly interacting substrate (see be-
low). For large NP diameter at this filling fraction, the
layers furthest from the NP interface approach the behav-
ior of a pure polymer melt at the same thermodynamic
conditions.
Fs(q0, t, r) at a distance r from the NP is found to

follow a two-step relaxation

Fself(q, t, r) = (1−A(r))e−(t/τs)
3/2

+A(r)e(−t/τα(r))
β(r)

,
(2)

where the first term is a vibrational relaxation, and
the second term represents the primary, or α-relaxation.
The vibrational relaxation time is essentially indepen-
dent of T , NP size, and ε, and we fix τs = 0.29. The
t
3
2 dependence corresponds to a Gaussian approxima-

tion to Fs(q, t) with displacements that are intermedi-
ate between ballistic and Brownian motion [25]. The α-
relaxation time τα(r) as a function of distance (r − d/2)
from the NP surface is shown in Fig. 1(a) for two dif-
ferent interaction strengths, ε = 2.0 (strong interaction)
and ε = 0.25 (weak interaction), respectively, for all NP
sizes studied at a temperature T = 0.46, above, but ap-
proaching Tg. (Tg ≈ 0.41 for the bulk polymer at these
conditions). As expected, for ε = 2.0, the relaxation
time increases near the NP interface, while the opposite
behavior occurs for ε = 0.25. The important observation
is that the change in the relaxation time relative to the
pure polymer (whether it is increased or decreased) is
substantially smaller for smaller NP size. For example,
for the largest NP (d = 10.0σ) with ε = 2.0, the re-
laxation time near the interface is roughly two orders of

magnitude larger than the smallest NP (d = 3.3σ), and
the separation of these scales only grows with decreasing
temperature. The effect of NP size on relaxation is less
pronounced for ε = 0.25 (Fig. 1(b)).
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FIG. 1. (a) The monomer relaxation time as a function of dis-
tance from the NP surface for different NP sizes determined
by fitting Fself(q, t, r) using Eq. (2). For a weak NP interac-
tion strength ε = 0.25 (black lines), the monomer relaxation
is enhanced approaching the NP surface. For a strong NP
interaction strength ε = 2.0 (red lines), the monomer relax-
ation is significantly slowed approaching the NP surface. (b)
The relaxation time nearest to the NP surface as a function
of interaction strength for different NP sizes. The data show
that the effect of interactions on surface relaxation diminishes
as NP size decreases.

The spatial variation of the dynamics accessible by
simulations cannot be measured by most experiments.
However, when the relaxation time of the interfacial layer
becomes significantly larger than that of the polymer ma-
trix, earlier work has shown that the overall relaxation
function does indicate a distinct relaxation process of the
interfacial layer, i.e., the “bound polymer” [26]. The de-
pendence of the gradient of relaxation on NP size sug-
gests that the effects of bound polymer should be di-
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minished for smaller NP, a phenomenon we now con-
sider. The intermediate scattering function F (q0, t) for
the system as a whole for different NP sizes is shown
in Fig. 2 for a reference T = 0.46 and ε = 2.0. For
d = 10.0σ and d = 6.6σ the bound polymer contribution
to F (q0, t) is apparent from the additional relaxation pro-
cess at large t, most readily seen on a double-logarithmic
scale [Fig. 2(a)]. Such a bound polymer is only apparent
when the polymer-NP interaction strength follows ε & 1.
For the smallest NP size (d = 3.3σ), the distinction be-
tween the primary and the secondary (bound) relaxation
is very weak. This is because the separation between a
NP and its periodic images is small enough that the in-
terfacial zones of NP overlap, so that there is effectively
no bulk-like matrix relaxation. For systems with a dis-
tinct bound relaxation, F (q0, t) can only be described by
including an additional relaxation process, [21, 27, 28]

Fself(q, t) = (1−A)e−(t/τs)
3/2

+(A−Ab)e−(t/τα)
β

+Abe
−(t/τb)βb .
(3)

We thus extract the fit parameters A (the amplitude of
the vibrational relaxation), Ab (the bound monomer frac-
tion), τα (the primary relaxation), τb (bound interfacial
monomer relaxation), and the associated stretching ex-
ponents β and βb. τb decreases as the NP size decreases,
as expected from the relaxation near the NP surface (Fig.
1). In other words, smaller NP are less effective at cre-
ating a surface layer with substantially slowed-down dy-
namics.

To separate the influence of the overlap of interfacial
layers on adjacent NPs from the effect of NP size on the
interfacial layer, we performed additional simulations at
very low NP concentrations φ = 0.0128 for composites
with NP sizes d = 3.3 and d = 6.6. At the higher con-
centration discussed above (φ = 0.042), the system with
the smallest NP (d = 3.3σ) shows a significantly slower
relaxation of F (q, t) than the system with the larger NP
(d = 6.6σ) [Fig. 2(b)]. In contrast, at the lower NP con-
centration, the difference between the F (q, t) for different
NP sizes is substantially diminished [Fig. 2(c)]. These re-
sults argue for the importance of the overlap of interfacial
layers on adjacent NPs on the self-intermediate scattering
function, an effect that is magnified for high concentra-
tions of the smallest NPs.

To highlight the effects of changes in the bound layer
relaxation time with NP size, we evaluate the dynami-
cal Tg by the temperature at which the relaxation time
reaches a value of 1000 in LJ units. The relaxation time
is defined when F (q0, t) = 1/e. Note that this value of τ
is distinct from either τα or τb obtained from the three-
scale fit (Eq. 3). The resulting Tg obtained from both
the overall relaxation time τ and the matrix relaxation
time τα are plotted as a function of interaction strength
for different NP size. Figure 3 shows that the Tg of the
overall composite is more strongly affected at large ε for
the smaller NP size than for the larger NP size, despite
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FIG. 2. (a) The intermediate scattering function for sys-
tems with different NP sizes at an identical NP concentration
(φ = 0.042). The primary and bound relaxation times show
opposite dependences on particle size; specifically, the bound
layer relaxation time decreases as the NP size decreases. For
the smallest NP size (d = 3.3σ) this bound layer does not
affect the Tg. (b) Fself (q, t) for particle sizes d = 6.6σ, and
d = 3.3σ and NP concentration φ = 0.042 (same data as
(a), but with a linear scale on the ordinal axis). As a re-
sult of interfacial layer overlap, the primary relaxation time
of the d = 3.3σ system is significantly larger than that of the
d = 6.6σ system. (c) Fself (q, t) of the pure polymer, and the
composites at small NP concentration; for small φ the inter-
facial layers do not overlap for any case so that the effect of
NP size on the relaxation time is less significant.

the fact that τb is smaller for the smaller NP; this is a
consequence of the larger surface-to-volume ratio for the
same NP concentration when NP are smaller. For the
overall Tg, a naive expectation is that the Tg increases
linearly with the interaction strength. This holds only
for the smallest NP where all polymers are essentially
interfacial, but does not hold for larger NPs (d = 10.0
and d = 6.6) Fig 3(b); for these larger NP, the “cloak-
ing” effect of the bound layer reduces the increase in Tg
as the ε increases. This confirms our expectation that
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FIG. 3. (a) The glass transition temperature Tg for the over-
all composite for all NP sizes with identical NP concentration.
The Tg changes are larger for smaller NP. For the smallest NP
(d = 3.3), Tg increases roughly linearly with ε, qualitatively
different from that for the larger NP; this is due to the over-
lap of the interfacial zones for the smallest NP. (b) Tg for the
polymer matrix for different NP sizes with identical NP con-
centration; data for the NP size d = 3.3 is not included, since
all polymers are interfacial for this case. The smaller NP has
a larger effect on matrix Tg.

Tg should be more strongly affected when the interfacial
zones overlap. This effect can also account for the en-
hanced effect on Tg for small NP size has been observed
experimentally [22]. Indeed, for the concentration shown
here (φ ≈0.05), the scale of Tg changes is comparable to
that seen experimentally.

Our results suggest a unified understanding of Tg
changes in attractively interacting polymer nanocompos-
ites. There are several relevant length scales to consider,
namely the mean face-to-face separation between NPs r,
the length scale of interfacially dominated dynamics ξ
(typically a few monomer diameters), and the chain ra-
dius of gyration Rg (typically > ξ). Obviously, the effects
will be most pronounced when the interfacial zones on ad-
jacent NPs overlap (r/ξ . 1), but we anticipate interfa-
cial effects also play a significant role at larger separations
through chain bridging effects (r/Rg . 1). Because we
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FIG. 4. Schematics of the different regimes for interfacial ef-
fects of the NP. (a) The dilute regime, where the dynamics of
interfacial polymer decouples from that of the polymer ma-
trix when polymer-NP interactions exceed those of the matrix,
leading to very little Tg change. (b) The “bridging regime”,
where the separation of the NPs allows the interfacial chains
to bridge. The bridging of the interfacial polymers leads to
a higher change in Tg than in the dilute regime. (c) The in-
terfacially dominated regime, where the concentration of NP
is high enough that interfacial zones overlap. In this regime
the Tg has the largest change compared to the pure melt.
The value of r/Rg for d = 3.3σ, d = 6.6σ, and d = 10.0σ
is r/Rg = 3.3/2.16 = 1.52, r/Rg = 6.6/2.16 = 3.05, and
r/Rg = 10.0/2.16 = 4.63 respectively. (d) The normalized
change of Tg as a function of r/Rg. The systems shown are
composites of PMMA-silica (black circles), P2VP-silica (red
squares), OPAS-silica (green diamonds), and P2VP-alumina
(blue triangles). These data are gathered from references
22, 29–33. To estimate the mean face-to-face separation r be-
tween NPs, we use the expression r/d = (φmax/φ)1/3−1 [34],
where φmax is the maximum filling fraction (φmax ≈ 0.7), d
is the NP diameter, and φ is the NP filling fraction.

examined relatively short chains here (1.5 . r/Rg . 5),
such bridging effects are not apparent in our simulations.
Figure 4 schematically shows that the most interesting
case arises for large ε. If the NP concentration is low
enough that r/Rg � 1, the dynamics of the interfacial
polymer decouples from the polymer matrix. This de-
coupling serves to “cloak” the NP, and results in the
unexpected finding of little or no increase in the mea-
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sured Tg for strong ε [21]. The concentration at which
these interfacial regions will start to affect each other
(i.e. when r/Rg . 1) will be NP size dependent, since,
at a given concentration, the NP separation is smaller for
smaller diameter NPs. In other words, the critical con-
centration where interfacial effects will begin to dominate
Tg changes decreases for smaller NP. In addition, with
smaller separation r, confinement effects will be more
pronounced. Both of these effects tend to lead to larger
Tg shifts for smaller NPs.

To support these arguments, Fig. 4(d) shows experi-
mental data for the normalized change in Tg of several
polymer nanoparticle composites for a range of r/Rg val-
ues. For the largest r/Rg there is only a small change in
the Tg, consistent with our predictions for the behavior
of the dilute regime [Fig. 4(a)]. When the r/Rg . 1, the
experimental results show larger increases in the normal-
ized Tg. Finally, even smaller r/Rg values lead to large
increases in Tg, as expected. There are a few excep-
tions to these apparently general trends that are worth
emphasizing. Recent work by Fakhraai et al. [35] found
that for densely packed, but random NP assemblies, Tg
shifts were larger for longer chain length polymers, a find-
ing that is consistent with our assertion that the relevant
control parameter is r/Rg. However, the precise value of
r/Rg is hard to estimate here since the NPs are in con-
tact with each other. The increases found for the nor-
malized ∆Tg ≈ 0.075 (based on Fig. 4(d)) corresponds
to r/Rg ≈ 0.015. Whether this estimate is reasonable re-
mains to be verified. Torkelson et al.’s [36] measurements
of the ∆Tg for alumina-P2VP are significantly higher
than those shown in Fig. 4(d). We do not know the exact
reason for this deviation but conjecture it may be due to
the difference in the experimental method that is used to
measure Tg. Nonetheless, in broad strokes, the experi-
mental data are consistent with our simulations in that
they suggest that the relevant parameter here is r/Rg,
and that the normal shifts in Tg increase monotonically
(and apparently in a quasi-universal) manner with de-
creasing r/Rg.
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