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We find that the recently developed self consistent and appropriately normed (SCAN) meta-
generalized gradient approximation, which has been found to provide highly accurate results for
many materials, is, however, not able to describe the stability and properties of phases of Fe im-
portant for steel. This is due to an overestimated tendency towards magnetism and exaggeration of
magnetic energies, which we also find in other transition metals.

Density functional theory (DFT) calculations1 are a
central tool in condensed matter physics, chemistry, and
materials science. This utility is the result of the avail-
ability of sufficient accuracy in tractable approximate
functionals. This enables predictive calculations of prop-
erties of interest and elucidations of underlying mecha-
nisms of physical behavior. Therefore the development of
new practical functionals that improve the accuracy, and
therefore the range of behaviors and materials that can
be studied with DFT calculations, is of great interest.

Steel is arguably the most important industrial ma-
terial. Annual production exceeds 1.7 billion metric
tonnes. Steels are complex materials whose proper-
ties are controlled by microstructure. These microstruc-
tures are what provides steel with desirable combina-
tions of ductility, toughness and tensile strength. These
microstructures come from balances between different
phases mainly in the Fe-C phase diagram.2 While the
ground state of Fe is body centered cubic (bcc), an an
equilibrium face centered cubic (fcc) phase exists between
between 1185 K and 1667 K. Carbon has a much higher
solubility in this fcc phase (up to 2.14 wt% and 0.76
wt% at the eutectoid) than in the bcc phase (maximum
of 0.022 wt%), leading to an easily accessed eutectoid
point in the phase diagram (at 1000 K and 0.77 wt%
C). Cooling leads to nanoscale and microscale precipi-
tation of cementite (Fe3C, a very hard phase), in a bcc
Fe matrix, as well as non-equilibrium austenite (fcc Fe
with C) and sometimes other phases associated with al-
loying elements, to form microstructures such as perlite,
martensite and bainite. These microstructures, some-
times modified by mechanical deformation steps, are key
to the properties of steel. First principles based under-
standing of steel requires the ability to model these dif-
ferent phases and their relationships, most importantly
the relationship between the ground state bcc structure
(ferrite) and the fcc structure (austenite).

This has posed ongoing challenges to density func-
tional calculations. Early on it was found that the other-
wise highly successful local (spin) density approximation
(LDA), cannot describe Fe. In particular, it was shown
that the LDA predicts a non-magnetic fcc ground state
for Fe, with the ferromagnetic bcc structure lying higher
in energy.3 The LDA does, however, provide an accurate
value of the spin magnetization of Fe, when constrained

to its experimental bcc structure.

An important step was the development of generalized
gradient approximation (GGA) functionals,4–7 based on
knowledge of the behavior of the exchange correlation
hole in inhomogeneous electron gasses.8,9 In addition to
correctly predicting the bcc ground state and spin mag-
netization of Fe,6,10–14 these GGA functionals greatly im-
proved the energetics of a wide variety of molecules and
solids. This was a remarkable achievement, especially
considering that these GGA functionals were based on
constraints and scaling for the electron gas and not fits
to known materials properties.

Therefore, it is very reasonable to assume that func-
tionals that incorporate additional known exact prop-
erties of the inhomogeneous electron gas will at least
on average improve the description of atoms, molecules
and solids. A significant recent development along these
lines was the construction of a strongly constrained and
appropriately normed (SCAN) functional.15 This is a
semi-local meta-GGA functional. Meta-GGA function-
als are more convenient for calculations than hybrid
functionals,16,17 especially in extended systems.

The SCAN functional satisfies exact constraints, in-
cluding importantly the Lieb-Oxford lower bound for the
exchange energy,18,19 also important for the construc-
tion of the earlier GGA functionals, as well as scaling
relations.20 It is also designed to revert to the LDA for
the uniform electron gas (a norm) and also uses the hy-
drogen atom as a norm for the exchange. This is impor-
tant in regards to self-interaction errors. It is designed to
be accurate both for the slowly varying electron gas, and
for atoms, which is not possible in GGA functionals.21

Tests done to date generally confirm the expectation
that SCAN provides highly accurate results for many
materials,15,22–25 as might be expected from the many
constraints that it satisfies.26 However, there is at least
one indication that SCAN may not improve the already
generally good description of magnetism in some metallic
ferromagnets. Isaacs and co-workers25 reported that the
magnetization of Fe, Co and Ni are enhanced by 0.42
µB , 0.13 µB and 0.1 µB , respectively, relative to the
widely used GGA functional of Perdew, Burke and Ernz-
erhof (PBE).7 They observed that this degrades agree-
ment with experiment for Fe and Ni. Ekholm and co-
workers, also performed calculations for Fe, Co and Ni,
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and found that the moments were enhanced relative to
experiment, which they ascribed to a downshift of the 3d
states.27

We did calculations with the LDA, the PBE GGA and
the SCAN functional using two different methods, specif-
ically the projector augmented wave (PAW) method28

as implemented in the VASP code,29 and the all elec-
tron general potential linearized augmented planewave
(LAPW) method,30 as implemented in the WIEN2k
code.31 The VASP code includes a self-consistent calcu-
lation with the SCAN functional, except that that it re-
lies on PAW potentials constructed for the PBE GGA,
which is an approximation. The LAPW method as im-
plemented in WIEN2k is an all electron method that does
not rely on pseudopotentials. However, at present, SCAN
calculations with this method must be done non-self-
consistently, in particular, calculating the energy using
the SCAN functional, but based on the density from a
semi-local calculation. We used the PBE GGA with the
constrained DFT,32 specifically the fixed spin moment
(FSM) procedure,33–35 to generate the spin densities for
calculating the SCAN total energies.

This procedure involves solving the Kohn-Sham equa-
tions with a constraint that the integrated spin den-
sity (the spin-moment) equal a specified value. This is
achieved by imposing the constraint via a difference in
spin-up and spin-down Fermi levels, equivalent to a mag-
netic field operating on spin only.36 We used dense grids
of discrete moments to obtain the plots shown here. This
allows us also to calculate the total energy as a function
of the constrained moment for ferromagnetic materials,
and provides insights into the problems in the treatment
of magnetic transition metals with SCAN. We carefully
converged the calculations, using large basis sets, and
dense convergence tested k-point grids for all materials.
We compared the results from the two codes and find very
similar results, which supports the different approxima-
tions involved. We also did self consistent calculations
including spin orbit for the PBE and LDA functionals
to quantify the effect of spin orbit, which could not be
applied in FSM calculations for the SCAN functional.
These show that the effects of spin orbit are small on
the scale of the differences between the functionals, and
cannot resolve the discrepancies.

The measured saturation magnetizations of Fe, Co and
Ni are 2.22 µB , 1.72 µB and 0.62 µB , on a per atom
basis.37,38 These include both spin and orbital contribu-
tions. The orbital moments of Fe and Co from x-ray mag-
netic circular dichroism (XMCD) experiments are 0.09
µB and 0.15 µB , per atom,39 while the experimental value
for Ni is 0.05 µB .40 Our spin (msp) and orbital (morb)
moments, at the experimental lattice parameters from
LAPW calculations with the PBE functional including
spin orbit are msp=2.22 µB and morb=0.04 µB for Fe,
msp=1.62 µB and morb=0.08 µB for Co, and msp=0.63
µB and morb=0.05 µB for Ni, i.e. spin moments very
close to the experimental values, and orbital moments
are small and underestimated for Fe and Co, as in prior
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FIG. 1. FSM energy for bcc Fe at the experimental lattice
constant of 2.86 Å, on a per atom basis. The dashed lines
are the energies of non-spin-polarized fcc Fe, at the optimized
lattice parameter for the different functionals. The small dots
indicate the minimum energy points.

calculations.41 In our calculations without spin orbit, the
PBE spin moments are msp=2.22 µB , msp=1.62 µB , and
msp=0.63 µB , for Fe, Co and Ni, respectively, which are
the same as those with spin orbit to the quoted precision.
Thus spin orbit does not have a significant effect on the
calculated spin moments for these 3d ferromagnets. It is
also to be noted that any enhancement of the spin mo-
ment over the PBE values will degrade agreement with
experiment, including the case of Co.

Fig. 1 shows our results for the magnetic energy of bcc
Fe at its experimental lattice parameter, in comparison
with the energy of non-spin-polarized fcc Fe. Numerical
values and magnetic moments are given in Table I. As
seen, the SCAN functional yields dramatically different
results from the LDA and PBE functionals. Energy plays
a central role in density functional theory. As mentioned,
the LDA fails for Fe, predicting that the fcc structure has
lower energy, in particular by 0.165 eV. The PBE func-
tional yields the correct ordering, with an energy differ-
ence of 0.156 eV, considering a non-magnetic fcc struc-
ture. The SCAN functional predicts a much more stable
bcc structure, with an overestimated spin moment of 2.63
µB/atom and an fcc - bcc energy difference of 0.593 eV.
This is due to a much larger magnetic energy. Self con-
sistent calculations using VASP yield similar numbers,
specifically a spin moment of 2.65 µB and an energy dif-
ference of 0.579 eV, for SCAN. While these numbers do
not include the magnetic enthalpy of fcc Fe, it is clear
that SCAN predicts an overly stable ferromagnetic state
for bcc Fe. The experimental enthalpy difference between
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TABLE I. Calculated properties of Fe. aexp and acalc are the
experimental and calculated lattice parameters of bcc Fe, re-
spectively. The fcc-bcc energy difference ∆Efcc−bcc is as in
Fig. 1. ∆Emag is the magnetic energy from the difference be-
tween non-spin polarized and ferromagnetic states. Energies
are per atom.

LDA PBE SCAN Expt.

a (Å) 2.76 2.84 2.85 2.86
msp(aexp) (µB) 2.21 2.21 2.63 2.13
msp(acalc) (µB) 2.00 2.16 2.60 -
morb(aexp) (µB) 0.05 0.04 - 0.09
∆Emag(aexp) (meV) 448 566 1117 -
∆Emag(acalc) (meV) 317 529 1078 -
∆Efcc−bcc (meV) -165 156 593 60a

aestimate from extrapolated thermodynamic data (see text).

FIG. 2. LDA, PBE and SCAN FSM energy in meV/atom
for bcc and fcc Fe as functions of lattice parameter and spin
moment.

bcc and fcc Fe at 1185 K from assessed calorimetric mea-
surements is 0.009 eV/atom, while the low temperature
energy difference from thermodynamic models based on
experimental data is 0.06 eV/atom.42

Fig. 2 shows the FSM energy as functions of lattice pa-
rameter and moment for bcc and fcc Fe. In accord with
older work,3,14 in addition to its failure to predict the
correct ground state, the LDA strongly underestimates
the lattice parameter of magnetic bcc Fe, while the PBE
GGA give values in closer agreement with experimental
data. The SCAN functional gives a lattice parameter
similar to PBE for the bcc structure. The SCAN func-
tional predicts very different behavior for the fcc phase.
When constrained to ferromagnetism, the LDA and PBE
predict either no magnetism or a low moment state. The
SCAN functional predicts a high moment state. While
high moment ferromagnetism does not preclude a still

TABLE II. Magnetic data for Ni and Co from fixed spin mo-
ment calculations at the experimental lattice parameters. All
quantities are per atom.

LDA PBE SCAN Expt.
Co msp (µB) 1.61 1.62 1.79 1.57

morb (µB) 0.08 0.08 - 0.15
∆Emag (meV) 199 255 574 -

Ni msp (µB) 0.62 0.63 0.76 0.57
morb (µB) 0.05 0.05 - 0.05
∆Emag (meV) 50 61 129 -

lower energy ground state with antiferromagnetism, it is
incompatible with a weak low moment antiferromagnetic
state, due to the large magnetic energy associated with
the high moment state.

Experimental information on the magnetism of free fcc
Fe is limited by the fact that it is not a stable low tem-
perature phase. However, fcc Fe films grown epitaxially
on Cu are paramagnetic at ambient temperature, and be-
come antiferromagnetic at low temperature with TN∼65
K,43 similar to the behavior of small fcc Fe precipitates
in an fcc Cu matrix.44 According to neutron diffraction
measurements these have a small moment of ∼0.5µB

per Fe.45 Based on this, on this, as well as the prop-
erties of non-ferromagnetic austenitic steels,44 thermo-
dynamic modeling, and extrapolation of alloy data42,46

it is thought that fcc Fe is an itinerant weak antifer-
romagnet with a Neel temperature below 70 K, and a
relatively small contribution of magnetism to the energy.
DFT studies have indicted that there is an additional
high volume high spin ferromagnetic state with higher
energy, and this has been discussed in connection with
the stability of the fcc phase between 1185 K and 1667
K.14,42

We also did self consistent calculations with VASP for
the energy and moments of a hypothetical antiferromag-
netic bcc Fe, where the moments of the two Fe atoms
in the conventional cubic cell are oppositely aligned. We
find that with the PBE functional the moments as mea-
sured by the spin density around Fe sites, is reduced from
2.25 µB in ferromagnetic case (note there is a small neg-
ative interstitial spin moment of ∼ -0.03 µB) to 1.71 µB .
In contrast, the SCAN result for the antiferromagnetic
case of 2.66 µB is almost exactly the same as for the
ferromagnetic case, i.e. 2.65 µB . PBE predicts interme-
diate itinerant / local moment behavior for bcc Fe, while
SCAN predicts that Fe is in the local moment limit, in
general disagreement with experiment.47

Thus the known data is consistent with good agree-
ment between the predictions of the PBE functional and
experiment. Importantly, it is inconsistent with the pre-
dictions of the SCAN functional. Specifically, the results
point to severe problems in the SCAN predictions for
magnetic energies and moments in Fe. It is notable that
the differences in magnetic energies between SCAN and
the LDA and PBE functionals are much larger than the
differences between predictions of those two functionals.
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FIG. 3. FSM calculations of the magnetic energy of transition
metal elements with the LDA, PBE and SCAN functionals.

Considering the very different predictions of SCAN as
compared to standard functionals for the magnetic prop-
erties of Fe, it is of interest to investigate whether this
is general problem, or if it is restricted to Fe. Accord-
ingly, we performed fixed spin moment and self-consistent
calculations for other materials. We start with cemen-
tite (Fe3C), which is ferromagnetic and a key ingredi-
ent in many steels. The calculated spin magnetization
per three iron atom formula unit is 5.75 µB with the
PBE functional and 6.87 µB with SCAN (based on self-
consistent VASP calculations at the experimental lat-
tice parameters; very similar values were obtained from
LAPW FSM calculations). This compares with a total
room temperature saturation magnetization of 5.3 µB

from experiment,48 indicating again a substantial error
with SCAN.

Fig. 3 and Table II give the results of FSM calcu-
lations for other elements with the experimental struc-

tures and lattice parameters. Hexagonal close packed
(hcp) Co and fcc Ni are the other ferromagnetic 3d ele-
ments. Ni is regarded as a prototypical itinerant ferro-
magnet. SCAN gives very much larger magnetic energies
for these two elements as compared with PBE and LDA.
We also find enhanced spin moments with SCAN, and
similar to Fe we find significant degradation with respect
to experiment for both Ni and Co. The calculated spin
moments with the SCAN functional are 1.80 µB for Co
and 0.77 µB for Ni. bcc V and fcc Pd are both paramag-
netic metals down to 0 K according to experiment. Pd is
very close to ferromagnetism, and for this reason exhibits
strong spin fluctuations that have been implicated in pre-
venting a superconducting state in this element.49,50 Pd
is a particularly interesting test for density functionals,
since it is incorrectly predicted to be ferromagnetic by
some hybrid functionals,51 while showing borderline fer-
romagnetic behavior with standard GGAs.51,52 V is not
as close to ferromagnetism and is a superconductor at low
temperature.53 Our PBE and LDA results are consistent
with these experimental facts. SCAN on the other hand
predicts an effectively infinite susceptibility for V, and
a low moment ferromagnetic state for Pd. Thus quali-
tatively similar to Fe, SCAN strongly overestimates the
magnetic tendencies of V, Co, Ni and Pd.

The above results point to a surprising degradation of
the predictions of SCAN relative to PBE in describing
magnetism in transition metals, and suggest caution in
the use of this functional for predicting magnetic prop-
erties of materials. This may perhaps be due to the
challenge of obtaining the itinerant physics of systems
like Fe with multiple partially occupied d-orbitals, and
at the same time reproducing correct physics of atoms,
including cancellation of self-interaction. In any case, we
hope that the above results may motivate further work
to develop improved meta-GGA functionals, particularly
functionals that satisfy known constraints, from the inho-
mogeneous electron gas, including the many constraints
satisfied by SCAN, and possibly additional constraints,
and at the same time predict accurate magnetic proper-
ties of metals.
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