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Scale-free model for the coupled evolution of discrete dislocation bands and multivariant martensitic mi-
crostructure is developed. In contrast to previous phase field models, which are limited to nanoscale specimens,
this model allows treating nucleation and evolution of martensite at evolving dislocation pileups, twin tips, and
shear bands in a sample of an arbitrary size. Model is applied for finite element (FE) simulations of plastic
strain-induced phase transformations (PTs) in a polycrystalline sample under compression and shear. Solution
explains the one to two orders of magnitude reduction in PT pressure by plastic shear; existence of incompletely
transformed stationary state and optimal shear strain for strain-induced synthesis of high pressure phases.
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Interaction between PTs and plasticity is one of the funda-
mental problems in transformational/deformational material
behavior and material design [1]. Martensitic PTs usually start
at stress concentrators caused by dislocations. In addition to
pre-existing dislocations, dislocations may nucleate due to ex-
ternal stresses and internal stresses caused by PT. For plastic
strain-induced PTs, the martensite nucleation occurs at dis-
locations, shear bands, and shear-band intersections that are
generated during plastic flow. Plastic deformation reduces PT
pressure by a factor of 2 to 10 in comparison with hydrostatic
loading for various PTs [2–6]. Recently, reduction in pressure
due to plastic shear from 70 to 0.7 GPa was reported for PT
from graphite to diamond [7]. Such an extremely strong effect
of plastic shear was explained by nucleation at the dislocation
pileup [8], which produces a concentration of all components
of the stress tensor proportional to the number of dislocations
in a pileup. Much more precise simulation for a bicrystal
was performed [9–11] using the phase field approach (PFA)
to the interaction of PT and discrete dislocations developed in
[12, 13].

The main drawback of the traditional PFA is the necessity
of numerically resolving the widths of the phase interface and
dislocation core, which are ∼1 nm. Using 4-5 FEs across an
interface required for mesh-independent solutions results in
an atomic-size grid. This prevents a numerical treatment of
samples exceeding 0.1 - 1 µm. At the same time, the typical
initial grain size can be 10-1000 µm or larger.

In some theories [14], the interface width is artificially in-
creased to 1 µm (i.e. by a factor of 1000) while maintaining
the same interface energy. However, this leads to a propor-
tional reduction in the stress or temperature hysteresis [4, 15],
and the barrierless nucleation in the defect-free crystal occurs
very close to the phase equilibrium stress. This is in disagree-
ment with large stress and pressure hysteresis for many PTs
[7].

A microscale PFA was suggested in [16, 17] and was ap-
plied for the discrete martensitic microstructure evolution in

the sample exceeding 100 nm and without an upper limit.
We will use this model (see the complete system of equa-
tions in [20]) as part of our model for interaction of PTs and
discrete dislocations. The order parameter in [16, 17] is the
volume fraction of the martensite, c, which causes strain
softening and material instability during the PT, the trans-
formation strain localization, and the corresponding discrete
martensitic microstructure. This is in contrast to traditional
models [18, 19] with strain hardening that produces a smeared
description of martensite. The volume fraction of martensitic
variants are internal variables rather than order parameters,
i.e., they do not describe material instability and do not form
martensite-martensite microstructure and interfaces. Material
properties are determined by the simplest mixture theory (Eqs.
(S.1), (S.5), (S.7)) with the interaction term between austen-
ite and martensite (Eq. (S.2)), which actually causes material
instability. The thermodynamic driving forces for all PTs are
determined from the thermodynamic laws in Eqs. (S.9) and
(S.10). When the driving force exceeds an athermal thresh-
old (Eqs. (S.11) and (S.12)), a linear relationship between the
rate of PT and the corresponding net driving force is assumed
(Eqs. (S.13) and (S.14)). The model is practically scale-
independent because a gradient term is dropped. Although
the width of interface, which is equal to a single FE, is mesh-
dependent, this weakly affects the morphology of the marten-
sitic microstructure and macroscopic stress-strain curves [15].

In PFA for dislocations [24, 25], scaling up is usually pro-
duced by increasing the dislocation height at a fixed Burg-
ers vector, which, however, reduces transformation shear and
stress concentration by the same factor. PFA for interaction
between discrete dislocations and PTs [12, 13] was utilized at
the nanoscale only [9–11].

Our goal is to develop a modeling approach for interaction
between PTs and plasticity in large samples that still includes
dislocation pileup-type stress concentrators to cause nucle-
ation of the evolving multivariant martensitic regions. In the
letter, we suggest the utilization of the contact problem for-
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mulation [26, 27] to model multiple dislocations in dislocation
pileups and macroscopic shear bands and its combination with
the PFA for PT in elastic materials developed in [15–17]. De-
spite its simplicity, this model effectively reproduces the stress
field of a single dislocation (excluding stress divergence) and
the solutions to problems on nucleation and evolution of a
high pressure phase (HPP) at evolving dislocation pileups in
a bicrystal under compression and shear at the nanoscale [9–
11]. The model can be used for any sample size exceeding
30-50 nm. It is demonstrated that solutions for stresses and
HPP are scale-independent for geometrically similar samples
and that the number of dislocations in a pileup increases pro-
portionally to sample size. Problems on two-variant PT and
dislocation pileups evolution in a polycrystalline sample un-
der compression and shear are solved and utilized for the in-
terpretation of drastic reduction in PT pressure due to plastic
deformations [2–7] and other related phenomena.

Dislocations via contact problem. By definition [28, 29], a
dislocation represents a cut in an elastic continuum and rel-
ative sliding of two sides of the cut by the Burgers vector b.
Likewise, multiple dislocations along the same slip surface,
which can be considered to be continuously distributed, can
be defined by the relative sliding us. Furthermore, the trac-
tion and normal displacements across the cut are continuous.
Similar conditions can be reproduced by the solution of a con-
tact problem [26, 27] between two deformable bodies. The
tangential to the contact surface displacements, i.e. relative
sliding us, is determined by the constitutive equations. We
define the following general sliding (slip) rule

u̇s =

{
0 if f(τ ) < 0
q(τ ) if f(τ ) ≥ 0 ,

(1)

where f = 0 is the limit surface in the space of the shear
stress τ within a slip plane, which characterizes athermal re-
sistance to dislocation motion and within which sliding is im-
possible, and q is the function that determines the kinetics of
slip. These functions may include anisotropy, rate and nor-
mal stress dependence, and other features from the theory of
discrete or continuous dislocations or crystal plasticity [28–
30]. In particular, sliding can be allowed along the known
slip directions within a slip plane, governed by a resolved
shear stresses along these directions, and with some inter-
action terms between slip rates along different slip systems.
Because our current applications will be 2D, we simplify the
sliding rule as

u̇s =

{
0 if |τ | < τc
kτ if |τ | ≥ τc ,

(2)

where τc is the athermal threshold, and k > 0 is a scalar,
which is determined from the condition |τ | = τc, which corre-
sponds to the main equilibrium equations for continuous dis-
location distribution [28, 29]. The only spatial scale parame-
ter, the Burgers vector, does not need to be resolved numeri-
cally; i.e. the model is scale-independent and can be applied
to an arbitrary large sample.

Expressing equations for continuous distributions of dislo-
cations along the chosen slip surfaces in terms of formulation
of a contact problem allows us to utilize well developed FE
method codes for the solution of contact problems to simu-
late continuous dislocation evolution along the discrete slip
surface. By combining the contact problem with the model
for a scale-free multivariant martensitic PTs presented in [20]
(i.e., solving Eq. (2) along with Eqs. (S.4)-(S.17)), we can
describe the interaction of PTs and discrete dislocation pile-
ups along the prescribed slip systems. The critical shear stress
τc generally varies for different phases. If part of a slip plane
coincides with the phase interface, i.e. one side of the contact
couple belongs to one phase and another side belongs to an
other phase, the smaller τc is used.

PTs between low-pressure phase (LPP) bcc (austenite) and
HPP bct (martensite) are considered. The material parameters
are: the difference in the thermal energy between HPP and
LPP ∆Gθ = 1.0 GPa, the phase equilibrium pressure pe = 10
GPa, and the lattice instability pressure for the LPP pcr = 20
GPa; see also [20]. Quadratic plane strain FEs, straight edge
dislocations, the same τc for both phases, and two martensitic
variants are considered.

The model is implemented in Abaqus FE code through a
corresponding UMAT subroutine [27]. The mesh generation,
the shape and orientation of the grains and the slip systems are
facilitated via DREAM.3D [31] and MTEX [32]. Bcc crys-
tal deforms mainly along 12 slip systems {110} 〈111〉 in 3D,
but {112} 〈111〉 may also be operative [34]. The only way to
make simulations consistent with the plane strain treatment is
to select {112} 〈111〉 slip systems, which are inherited by a
bct crystal. Then, for all grain orientations, the Bunge-Euler
angles [33] are ϕ = 135◦, ϕ2 = 0◦, and ϕ1 (a rotation about
the out-of-plane normal). Specific slip systems and the values
of ϕ1 are shown in all figures. The angle between (21̄1̄)[111]
and (211)[1̄11] slip systems is 70.52◦.

When in the contact problem us = b is imposed along part
of a contact line in a sufficiently large sample, producing sep-
arated positive and negative dislocations, the stress fields are
in good agreement with the analytical solution for a single dis-
location [28] for |x| ≥ 0.3b. It is proven that by changing the
mesh density, regularity, and the element type, the all follow-
ing solutions are practically mesh-independent.

First, we solve the problem on PT at the dislocation pileup
in a bicrystal, for the same conditions as in [9] in which
the nanoscale PFA was utilized. Consider a sample which
consists of two rectangular crystals, both of the size h ×
L =20×25, in which the PT and/or the contact problem for
the dislocation pileup are solved (Fig. 1). Two rectangles with
the size of 50×5 at the top and bottom of the bicrystal simu-
late the elastic accommodations of the surrounding grains. We
chose τc = 1.0 GPa. In the presence of one dislocation, at the
center of a sample and under hydrostatic loading, the lowest
hydrostatic pressure at which the HPP nucleates is ph = 14.70
GPa; this is close to 15.75 GPa reported in [9].

In Figs. 1 and 2, the top edge of the sample is subjected to
a homogeneous Cauchy (true) compressive stress σn and uni-
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FIG. 1. Distribution of normalized sliding displacements us/L along
the slip system in the left grain vs. normalized distance x/L. Results
for L = 25 nm and L increased by factors of 10, 102, and 103 coin-
cide, i.e. solutions for stress, strain, and PT are independent of scale.
Inset: Geometry, loading conditions, and stationary solution for vol-
ume fraction of HPP c and dislocations in a bicrystal under fixed
compression σn = 3.05 GPa and shear γ = 0.2. Dislocation signs
are placed at points corresponding to the integer values of number of
dislocations n = us/b.
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FIG. 2. Nucleation and evolution of the HPP in the right grain at fixed
γ = 0.2 and σn = 3.05 GPa (a) without plasticity for ϕ1 = 69.7◦

and (b) for ϕ1 = 89.7◦, as well as (c) with plasticity for ϕ1 = 89.7◦.
White isolines for the stationary solutions correspond to the local
phase equilibrium condition, σ : εt = ∆Gθ = 1.0 GPa.

form horizontal displacement, u, presented by macroscopic
shear γ = u/h, both constant in time, where h is the height of
the grains; periodic boundary conditions (PBC) for displace-
ments are implemented on the lateral edges; and the bottom
edge is fixed. These fast loading conditions are the same
as in [9]. The PT without dislocations in the right grain is
studied when a single horizontal contact surface as the slip
plane for modeling dislocation activity is introduced in the
left grain. For characterization of the PT in 2D, the pressure
is defined as p = −0.5(σx + σy). Without shear strain, the
stress σn = 3.05 GPa results in an averaged pressure of 2.0
GPa over each grain. With the increasing shear γ, the con-
tact surfaces start slipping, producing an increasing number
of couples of positive and negative dislocations. Several dis-

locations pile up at the grain boundary, producing steps from
both sides of the bicrystal. The stationary solution for γ = 0.2
contains a pileup of 7 dislocations, the same number as in [9].
Thereafter, the PT is permitted in the right grain, similar to
[9]. Due to the high-stress concentrations at the tip of the
dislocation pileup, two HPP regions nucleate, grow, and co-
alesce. The final volume fraction of HPP averaged over the
right grain is c̃ = 0.58. In [9], c̃ = 0.51, and the morphol-
ogy of the HPP region is quite close to what is obtained here
(see Fig. 2a and Fig. S1 in [20]). Thus, our model is effec-
tive in reproducing results from the much more sophisticated
nanoscale model in [9]. Due to the volume reduction during
PT, the averaged pressure over both grains reduced to a sta-
tionary value p̄ = 0.07 GPa. This is more than two orders
of magnitude lower than the PT pressure of 14.7 GPa under
hydrostatic loading. This conceptually proves the ability of
our model to describe the drastic reduction in the PT pressure
due to plastic shear obtained in experiments [2–7]. Figs. 2a
and b show that the morphology strongly depends on the grain
orientations.

Variation of sample size, L, for geometrically similar sam-
ples under the same σn and γ by three orders of magnitude
illustrates that the curve of the normalized sliding displace-
ment us/L vs. x/L, as well as the stress, strain, and volume
fraction of the HPP fields are independent of L. Thus, our
model is indeed scale-independent.

Next, we allow dislocation activity in the right grain (ϕ1 =
89.7◦) by introducing two slip systems with±35.26◦ to the x-
axis (Fig. 2c) and start the PT and sliding within right grain af-
ter reaching a stationary dislocation solution in the left grain.
Due to rate-independent dislocation kinetics (2), dislocations
are much faster than the PT, and the corresponding stress re-
laxation suppresses the PT. Three nuclei instead of two are
observed in Fig. 2c; two of them coalesce. These nuclei do
not cross the slip planes because tensile stresses in the regions
with missing atomic planes produce athermal interface fric-
tion. In fact, in addition to the tip of the dislocation pileup,
strong compressive stress concentrator near the extra planes of
dislocations promotes the nucleation and stabilization of HPP,
and should be considered as a new nucleation site not men-
tioned in the literature. In total, the HPP region (c̃ = 0.35)
is smaller than the one in Fig. 2b (c̃ = 0.48). Nonetheless,
similar to the nanoscale PFA [9, 10], we are able to find such
combinations of loading conditions that the PT wins its com-
petition with the plasticity.

When the elastic properties of the material do not change
during the PT and the contribution from the surface energy is
neglected, the following phase equilibrium condition for each
point of a sharp interface should be valid [10, 11, 35]:

σ : εt = ∆Gθ, (3)

in which σ : εt is the transformation work (εt is the transfor-
mation strain tensor). The isolines corresponding to Eq. (3)
based on the local stress tensor field are plotted in Fig. 2. For
most interfaces, the condition in Eq. (3) is met, similar to the
nanoscale PFA [10, 11]. Surprisingly, the plastic strain does
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FIG. 3. (a) The grain structure of the polycrystal with shown ϕ1

angles loaded by fixed σn = 6.05 and shear strain rate of 0.004 s−1,
(b) evolution of the averaged volume fraction of the HPP, c̃, in each
grain, and (c) evolution of pressure, shear stress, and volume fraction
of the HPP c̄ as well as each martensitic variants c̄i averaged over the
sample vs. the macroscopic shear strain.

not appear in Eq. (3); however, plasticity contributes indirectly
by changing local stresses.

Coupled dislocation and PT evolution in a polycrystalline
aggregate shown in Figs. 3a and 4 is studied at τc = 0.3
GPa, fixed σn = 6.05, and slow shear straining with the rate
of 0.004 s−1. Location, number of slip bands, and spacing
between them are determined by initial heterogeneities of the
microstructure (defects and composition) and internal stresses
and are chosen arbitrarily. Nucleation of HPP occurs mostly
near the extra planes of dislocations in the same grains and
near to the tip of dislocation pileups in the neighboring grains.
For most interfaces, the phase equilibrium condition (3) is
met. This confirms the necessity of excluding plastic work
from the Eshelby driving force for the interface propagation
debated in [35]. The averaged volume fraction of the variant
2 is larger than for variant 1. Due to the different orientations,
sizes, and positions of grains, a very heterogeneous volume
fraction of the HPP in different grains is observed (Fig. 3b).
The smallest volume fraction is in the grains located at the cor-
ners (grains 6, 2, and 9); however, the PT is very pronounced
in a large corner grain 1. The PT in most grains reaches or
nearly reaches the stationary state , and reverse PT occurs in
grains 2 and 8.

The results for some parameters averaged over the entire
sample are shown in Fig. 3c. After a small initial growth from
4.7 to 5 GPa, the averaged pressure drops to 2.4 GPa during
the shear due to the reduction in volume throughout the PT.
The shear stress increases to 2.05 GPa due to the increasing
number of dislocations as well as the back stresses due to dis-
location pileups at grain boundaries and stress heterogeneities
in various grains. Thus, the shear stresses play a more active
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FIG. 4. Evolution of dislocations, the HPP (a), and two martensitic
variants (b and c) under stress fixed σn =6.05 and shear strain rate
of 0.004 s−1.

role than the pressure with a PT progression. Based on the
curves for c̄i and c̄, PT reached a stationary state and further
increase in shear is not productive. This result corresponds
to the existence of the stationary, incompletely-transformed
states for strain-induced PTs [8, 36, 37] and the concept that
plastic shear should be optimal rather than as large as possible
[36].

Note that both for bicrystal and polycrystal, the phase equi-
librium condition (3) is also met for the stresses averaged
over the entire sample. This finding, along with the re-
sults in Fig. 3c, is important for the computational develop-
ment of the model for polycrystalline aggregate, which is re-
quired for macroscale modeling of the behavior of a sample
compressed and sheared in traditional and rotational diamond
anvils [38, 39]. A greatly simplified kinetic model [8] is cur-
rently used.

Thus, a scale-free model for the coupled evolution of
discrete dislocation bands and multivariant martensitic mi-
crostructure is developed. As a thin twin in [29] and shear
crack in [40] are presented as dislocation pileups, our model
includes them as well. Because our approach is based on slip
displacements, it can be applied to macroscopic shear bands
without referring to dislocations as well. The independence
of the solutions of the sample size is demonstrated. Despite
its simplicity, the model reproduces well solutions obtained
with the nanoscale PFA [9–11]. The plastic strain-induced
PT in a polycrystalline sample under compression and shear
is simulated. The solution explains a drastic reduction in
PT pressure due to plastic deformations [2–7]; the existence
of an incompletely-transformed stationary state; and optimal
shear strain for strain-induced synthesis of HPPs. The sim-
plest phase equilibrium condition (3), which does not contain
plastic work and surface energy, is met for the entire sample
and most of the interfaces.
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