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Abstract

The extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is

of possible relevance to precipitation formation and radiative transfer. To that end, data gathered

by an airborne holographic instrument are used to explore the three-dimensional spatial statistics of

cloud droplet positions in homogeneous stratiform boundary-layer clouds. The three-dimensional

radial distribution functions g(r) reveal unambiguous evidence of droplet clustering. Three key

theoretical predictions are observed: existence of positive correlations, onset of correlation in the

turbulence dissipation range, and monotonic increase of g(r) with decreasing r. This implies that

current theory captures the essential processes contributing to clustering, even at large Reynolds

numbers typical of the atmosphere.

PACS numbers: 92.60.Nv, 92.60.Mt, 47.55.Kf, 92.60.Jq
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Collections of dense particles residing in a turbulent fluid are ubiquitous in natural and

applied systems, from dust in the interstellar medium, to droplets in a cloud, to fuel spray in

a combustion chamber. The spatial distribution of such particles is relevant to processes such

as collision rates and radiative transfer, and therefore can influence rates of planetessimal or

rain formation, and the optical properties of clouds relevant to the albedo of planets [1–4].

Studies over the last two decades have shown that dense particles in a turbulent fluid

tend to cluster [5–19]. More explicitly, extensive study has resulted in the following physical

picture: spatial correlations between particles are (1) positive in sign, i.e., particles tend

to cluster in common regions of the turbulent flow; (2) clustering is observed within the

dissipative range of turbulence, beginning at scales of order 1 − 10 times the Kolmogorov

length scale; and (3) correlation strength increases monotonically with decreasing separation

distance (as a power law).

The physical picture above is based on the simplest, limiting scenario of small particle

inertia, large particle-to-fluid density ratio, particle diameter much less than the dissipation

scale of the turbulence, no particle-particle interactions, monodisperse uniform particles, no

gravitational settling or other uniform drift speeds, and the existence of fully-developed,

steady-state turbulence.

More recent work has attempted to determine whether the physical picture changes if

some of the assumptions in this limiting scenario are relaxed. Theoretical work has examined

the impact of including polydisperse particles and including a uniform drift [15, 19–21],

and careful laboratory observations have shown that spatial correlations are (as expected)

suppressed in the presence of gravitational sedimentation or polydispersity in particle Stokes

number [22–27].

A central question that remains centers on scale dependence, which is of practical interest

in geophysical and astrophysical systems: do particle clustering in simulations and labora-

tory experiments with maximal spatial extents less than a meter translate quantitatively to

systems such as atmospheric clouds with scales of kilometers, or to astrophysical systems

with vastly larger scales? This is essentially a question of Reynolds number (Re) dependence,

because of the implicit dependence on the energy-injection length scale L: Re3/4 ∼ L/η with

η the Kolmogorov length scale. Typical laboratory and simulation scale ratios reach order

L/η ≈ 103, whereas L/η ≈ 106 and above are of interest for rain or planet formation. Turbu-

lence is known to become strongly intermittent in the distribution of acceleration and energy

2



dissipation with increasing Re [28, 29], and because inertial clustering is a dissipation-scale

phenomenon the Re-dependence is open to debate.

Because systems with such wide ranges of length scales are currently out of reach of

simulation and most laboratory capabilities, this study presents direct, three-dimensional

measurements of in-cloud particle spatial correlations using an airborne digital-holographic

instrument. While the realities of limited sampling statistics due to lack of statistical ho-

mogeneity in atmospheric flows and broad particle size distributions make a quantitative

comparison to theory quite challenging at this stage, we are able to search for the three

general characteristics of inertial clustering described in the first paragraph at Reynolds

numbers inaccessible via other means. The results can then be assessed for their relevance

to problems such as rain formation rate or cloud albedo modification through pollution or

even geoengineering.

In situ atmospheric measurements have been used to estimate several metrics of cloud

particle clustering (see, e.g., [30–39]), but here we focus on the radial distribution function

g(r) because of its direct link to the theoretical developments previously described. Empir-

ically, g(r) reports the ratio between the observed joint probability of finding two particles

with centers separated by distance r ± dr/2 and the theoretical joint probability of finding

two particles with centers separated by distance r± dr/2 in a Poisson distribution with the

same volume and number of particles as measured. Mathematically,

g(r) =
N∑
i=1

ψi(r)/N

(N − 1)
(
dVr
V

) (1)

where ψi(r) is a count of the number of particles having their centers a distance between

r − dr/2 and r + dr/2 from the center of the ith particle in the measurement volume. N is

the total number of particles in the measurement volume V , and dVr is the volume of the

generalized n-dimensional shell between radii r − dr/2 and r + dr/2.

When no particle pairs are found with separation r± dr/2, g(r) = 0. When g(r) exceeds

1 for some value of r, this implies that there are more particle-pairs with separations at

spatial scale r than would be expected in a Poisson distribution with the same total number

of particles distributed throughout the same volume (indicating spatial clustering on this

scale).

The rest of this manuscript (i) addresses the question of statistical confidence to identify

3



a minimum critical spatial scale for estimation of g(r), (ii) presents (to our knowledge, the

first ever) in situ three-dimensional g(r) curves for spatial scales larger than the critical

spatial scale, and (iii) discusses the broader implications of these g(r) observations as they

relate to our understanding of cloud microphysical processes.

In order to reliably estimate g(r) from cloud measurements and to identify signatures of

inertial clustering, it is crucial to use a measurement strategy that allows the dissipation-

range to be reached with statistical significance. Because for cloud turbulence η ≈ 1 mm,

we desire some means of estimating g(r) on mm scales. We use two strategies to accomplish

this measurement challenge: First, we adopt digital holography, which allows for a three-

dimensional sample volume and, as shown later, minimizes sampling uncertainty relative to

more common one-dimensional sampling instruments; Second, we sample from clouds that

appear statistically homogeneous in space so that multiple samples can be averaged.

Specifically, we utilize the HOLODEC (Holographic Detector for Clouds) instrument,

which was deployed during the CSET (Cloud System Evolution in the Trades) experiment

[40]. The CSET field campaign occurred during July/August 2015. This experiment utilized

the NSF/NCAR GV HIAPER aircraft [41] outfitted with a large number of instruments [42]

for measuring thermodynamic, radiative, and cloud properties. The primary aim of CSET

was to sample the transition of marine stratocumulus to trade wind cumulus clouds, making

it ideal for the present study due to the occasional long continuous sampling of stratocumulus

decks at constant altitude. HOLODEC is an in-line digital holography instrument explicitly

designed to explore cloud microstructure [43–45]. The instrument has previously been used

to examine drop size distribution and liquid water content fluctuations on the centimeter

scale [46], and the behavior of the instrument during CSET has been validated by comparison

to co-collected cloud data in different parts of the particle size domain [47].

This study uses HOLODEC data from 4 intervals during 2 of the CSET research flights.

The 4 flight intervals were chosen based on (1) their nearly constant flight altitude, (2)

continuous or nearly continuous collection of holograms that meet the sampling criteria of

10-µm minimum droplet size and 100-particle minimum per sample volume, and (3) having

a relatively stationary drop number concentration throughout the interval. Hologram-by-

hologram drop numbers, mean drop sizes, and size distributions for each of the four flight

intervals are shown in the online supplement. HOLODEC takes images at a frequency of 3.3

Hz, so at nominal flight speeds of 136 m/s, consecutive holograms are located approximately
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TABLE I. Summary information for flight intervals used in this study. As noted in the text,

particles less than 10 µm in diameter and holograms with fewer than 100 retained droplets in the

sample volume were discarded. The final 4 columns indicate mean interval-averaged/estimated

values of retained droplet diameter, turbulent energy dissipation rate, Stokes number, and Settling

parameter. Flight interval-averaged standard deviations for droplet diameter, St, and Sv are

presented in the online supplement.

Interval Flight Time Analyzed Retained 〈D〉 ε

Ref Date Interval (UTC) Holograms Droplets (µm) (m2/s3) St Sv

A 7 July 2015 16:19-16:31 1438 459189 15.0 9.9× 10−4 5.5× 10−3 0.61

B 7 July 2015 17:15-17:26 2005 2014146 15.0 1.2× 10−3 6.1× 10−3 0.59

C 27 July 2015 16:31-16:41 1835 888511 16.0 2.7× 10−3 1.0× 10−2 0.54

D 27 July 2015 17:20-17:27 1278 346550 20.2 1.6× 10−3 1.3× 10−2 0.99

40 m apart from each other. In an effort to ensure that only reliable data is used, this

manuscript focuses on the analysis of detected particles larger than 10 µm in diameter

located within a 3.6 cm3 subvolume of each hologram. More complete information associated

with the CSET HOLODEC data set and considerations related to subvolume selection can

be found in [47, 48].

Details about the four intervals selected are presented in Table I. For each flight interval,

estimates of the turbulence energy dissipation rate (ε), mean-interval St (τp/τk relating

particle inertial response time to Kolmogorov time scale) and Sv (vt/vη relating terminal

fall speed to Kolmogorov velocity scale) were obtained by combining HOLODEC data with

25-Hz flight data [49]. The ε was computed by estimating the magnitude of the flat-portion

of the second order compensated structure function of the GPS-corrected vertical velocity

component of the wind. The St and Sv were estimated by using the mean measured cloud

drop diameter, estimated value of ε, and other locally measured thermodynamic variables

from the 25-Hz flight data, as described elsewhere [50].

We now consider the question of sampling uncertainty versus spatial scale r. Assuming

statistical homogeneity over the 3.6 cm3 sampling volume of an individual hologram, the

uncertainty in the evaluation of g(r) for a single hologram is solely driven by sampling
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variability, which depends on (1) the size and shape of the sample volume, (2) the scale of

interest r, and (3) the number of particles in the hologram N . Since sampling uncertainty is

related to shot-noise in counting statistics, the uncertainty in g(r) increases with decreasing

r (as a spherical shell has dV ∝ r2dr). Further, there is substantial hologram to hologram

variability in the number of cloud particles present (e.g., see figure in online supplement).

To illustrate, we consider an example that highlights the influence of particle number

and sampling volume shape (see table in supplemental materials for more details). A 3D

volume matching the size and shape of the HOLODEC sample volume is compared to a

1D volume matching that sampled by a single-drop counting instrument (like a Forward

Scattering Spectrometer Probe [34]) sampling an equivalent 3.6 cm3 volume. The cloud

droplet concentration is chosen as either 70 cm−3 or 300 cm−3 (approximately the range of

values seen in the four flight intervals in this study). The values of r and dr chosen are the

same ones used in the rest of this study.

To estimate the uncertainty in g(r), we use an ad hoc method designed to quantify the

plausible sampling variability. If N is the number of observed particle pairs separated by

r ± dr/2 and P is the number of expected particle pairs separated by r ± dr/2 in a Poisson

distribution with the same number of particles, then we know gmeas(r) = N /P . We define:

g±(r) ≡ N ±
√
N

P ∓
√
P

(2)

using the assumption that the uncertainty in N and P scale as N 1/2 and P1/2 (counting

variables), respectively. For a measured gmeas(r), the true intrinsic value of g(r) likely lies

between g−(r) and g+(r).

Figure 1 shows regions bounded by g−(r) and g+(r) as a function of r when N = P ; these

are calculated curves (not corresponding to simulation or real data) that demonstrate the

uncertainty due to sampling statistics only. Though g(r) ≡ 1 by construction, a measure-

ment of g(r) could potentially end up anywhere in the gray-shaded region. The figure clearly

demonstrates that using a fully 3D measurement allows access to the mm-scale range by

diminishing the sampling uncertainty for a single hologram. Specifically, HOLODEC sample

volumes can be used to measure g(r) on scales larger than ∼ 1 mm, thereby allowing the

onset of the dissipation range to be examined. These sampling considerations, along with

consideration of instrument inhomogeneities (see supplemental information for details), mo-
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FIG. 1. Quantifying the uncertainty due to counting statistics in the estimation of g(r) as a

function of scale for differently shaped volumes and realistic cloud droplet concentrations. Each

panel shows a range where the measured g(r) might lie when the intrinsic system g(r) is known

to be unity. These curves are derived from applying
√
N uncertainty estimates to the counting

statistics needed to compute g(r). The 3D volumes match the aspect ratio of the HOLODEC

sample volume, while the 1D volumes are designed to mimic a typical single-particle-counting

instrument viewing the same total volume. Note that the scale of the 1D volume panels had to be

magnified, since the uncertainty is many times larger for 1D data-sets. Individual hologram g(r)

estimates for HOLODEC data drop below 10% uncertainty for spatial scales somewhere between

1 and 3 mm, depending on droplet number concentration.

tivate averaging g(r) from multiple holograms to reduce sampling uncertainty.

Figure 2 shows the interval-averaged radial distribution functions for the four flight in-

tervals. In addition to plotting the flight-interval averaged g(r) (solid black curve), two

separate regions are marked to quantify the interval-averaged uncertainty. The pale maroon

shading is found by extending the single-hologram uncertainty results shown in the left pan-

els of Fig. 1 to an entire flight-interval. Essentially, the thickness of the envelope is scaled by

N
−1/2
h where Nh is the number of holograms in the interval. The gray shading is determined

through Monte Carlo sampling from 100 simulants of each flight interval. For each simulant
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FIG. 2. The interval-averaged radial distribution functions for each of the four flight intervals

examined in this study. The observed radial distribution functions exceed the maximum value

expected based on sampling uncertainty throughout the range 1-5 mm in all flight intervals. Three

key theoretical predictions are observed: positive correlation, onset of correlation in the dissipation

range (less than approximately 10 mm), and monotonic increase of g(r) with decreasing r. The

two shaded regions quantify the sampling uncertainty via two independent methods explained in

the text.

a sequence of holograms with the same number of particles per hologram as the underlying

flight intervals were created. All particles were placed in each simulated hologram’s 6 mm x

6 mm x 10 cm spatial domain perfectly randomly. For each of the 100 simulants, the mean

g(r) was computed; All 100 simulant mean g(r) curves lie within the gray region in Figure

2.

The two independent methods for determining sampling uncertainty allow us to conclude

that the measured g(r) show statistically significant clustering of cloud droplets in the range

of approximately 1 − 5 mm. We observe that the measured g(r) are consistent with the

three core predictions of the theory of inertial-particle clustering in turbulence. Namely,

(1) the spatial correlations between particles are positive in sign; (2) clustering is observed

within the dissipative range of turbulence, beginning at lengths of order 10η; and (3) the
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correlation strength increases monotonically with decreasing separation distance. Regarding

the third point, the theory predicts power-law behavior, but the accessible range of scales

is too limited to allow a reliable conclusion in that regard (although the curves are at least

qualitatively consistent with power-law-like behavior). The consistency with this theoretical

picture suggests that other mechanisms not accounted for in the theory, such as particle

charge and microhydrodynamic interactions, are not playing a strong role at the measured

scales. Because of the large length and time scales typical of atmospheric flows, the measure-

ments also suggest that clustering behavior does not change drastically at large Reynolds

numbers.

It is worth emphasizing that the requirement of averaging over multiple holograms, which

required that we sample in a stratocumulus environment, places us in conditions least favor-

able to detect cloud droplet inertial clustering. Isolated convective clouds have much higher

turbulence energy dissipation rates and therefore tend to favor higher Stokes numbers and

lower settling parameters [50]. Theory and computation suggest that the shape and the

magnitude of the radial distribution function in a turbulent environment is related to the

intensity of the ambient turbulence (see, e.g., [5, 15, 18, 20, 21]). Indeed, the flight-interval

averaged clustering has signals of the same order of magnitude as those observed in the

laboratory at lower Reynolds numbers, for realistic particle size distributions [27, 51].

If small g(r) values are common in the atmosphere, it may help to understand why earlier,

smaller-scale studies of atmospheric particulate clustering using holographic measurements

[32, 52–55] gave somewhat conflicting results; it was only due to the large amounts of data

available in this study that the sampling variability could be lowered enough to get an

unambiguous confirmation of weak clustering. With less data, our results – like many of

those in the studies before ours – would have been inconclusive.

In summary, holographic measurements have led to the first fully 3-dimensional radial dis-

tribution functions from in-cloud droplet spatial positions. Sampling considerations require

subtle consideration of the observed radial distribution functions, but a simple argument

based on instrumental and physical parameters showed that there exists a critical spatial

scale (∼ 1 mm) above which data from the HOLODEC instrument can be reliably used

in realistic cloud conditions to estimate the radial distribution function. Analysis of this

radial distribution function from four distinct flight-intervals during CSET revealed statis-

tically significant and unambiguous evidence of weak clustering on scales between about
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1 and 5 mm. The measurements are consistent with three key predictions of the theory:

positive spatial correlations, onset in the dissipation range of the turbulent flow, and mono-

tonic increase with decreasing spatial scale. Though these clustering signals are small for

these weakly turbulent clouds, the ability to validate the existing theoretical picture, even

at a semi-quantitative level, suggest that the theory can be extended to other conditions

encountered in the atmosphere.
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