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Optical nonlinearity has been widely used to try to produce optical isolators. However, this is very difficult
to achieve due to dynamical reciprocity. Here, we show the use of the chiral cross-Kerr nonlinearity of atoms at
room temperature to realize optical isolation, circumventing dynamical reciprocity. In our approach, the chiral
cross-Kerr nonlinearity is induced by the thermal motion of N-type atoms. The resulting cross phase shift and
absorption of a weak probe field are dependent on its propagation direction. This proposed optical isolator can
achieve more than 30 dB of isolation ratio, with a low loss of less than 1 dB. By inserting this atomic medium
in a Mach-Zehnder interferometer, we further propose a four-port optical circulator with a fidelity larger than
0.9 and an average insertion loss less than 1.6 dB. Using atomic vapor embedded in a on-chip waveguide, our
method may provide chip-compatible optical isolation at the single-photon level of a probe field.

Introduction. — Optical isolation is highly desirable for
lasers, optical information processing, and quantum networks
[1, 2]. It requires optical non-reciprocity, i.e., breaking of
Lorentz reciprocity [3], but is very challenging to achieve
without applying magnetic fields.

Non-magnetic optical isolation is chip-compatible and
therefore is in great demand for integrated optical signal pro-
cessing. It has been studied via dynamically modulating ma-
terial permittivity [4–7], inducing a photonic Berry phase [8–
11], twisting a resonator [12], fast spinning resonator [13],
or using optomechanical systems [10, 14–16]. Over the past
decades, optical nonlinearity (in particular, Kerr or Kerr-
like nonlinearity) has attracted intense research as a chip-
compatible candidate for magnetic-free optical isolation [17–
22]. Moreover, using a gain medium has also been demon-
strated for optical isolation [19–21, 23, 24]. However, optical
isolators with nonlinearity or gain in the medium are subject
to dynamic reciprocity [25, 26]. Therefore, this kind of device
is non-reciprocal only for strong signals with particular inten-
sity, but fail to isolate weak signals. A chiral gain has been
recently used to overcome this fundamental barrier in nonlin-
ear isolators [22, 23]. However, a passive nonlinear isolator
without dynamic reciprocity would be of interest. Moreover,
most of the existing schemes for optical isolation require high-
quality resonators or cryogenic temperature.

Instead of classical optics, quantum optics provides a tool
to control photon propagation, including electromagnetically
induced transparency (EIT) [27–29], optical non-reciprocity
[30–32] and chirality [33–38]. Light propagating in a “mov-
ing” Bragg lattice created in atoms is subject to a “macro-
scopic” Doppler effect and has demonstrated non-reciprocity
[39–41]. By using a chiral quantum system, optical isolation
has been achieved at the single-photon level [42–45].

Optical chirality has been widely exploited to engineer
spin-orbital interaction of light [33–37]. In this letter, we
propose how to achieve efficient optical isolation using chi-

FIG. 1. (Color online) (a) Schematic diagram of our setup for optical
isolator and circulator. For an optical isolator, we only consider the
upper channel embedded with a cloud of N-type atoms. The photon
passing through the atoms suffers a phase shift φ and an amplitude
transmission of ξ, dependent on its propagation direction. To perform
an optical circulator, the lower channel is added to form a Mach-
Zehnder interferometer, using beam splitters BS1 and BS2, with the
upper one. In the lower branch, a phase shift ϑ is used to compensate
the phase shift of the backward-moving photon in the upper branch.
(b) Level diagram of N-type atoms. The switching (Ωs), coupling
(Ωc) and probe (Ωp) fields couple to the transitions |1〉 ↔ |2〉, |3〉 ↔
|2〉 and |3〉 ↔ |4〉, with detunings ∆s, ∆c, and ∆p, respectively.

ral cross-Kerr (XKerr) nonlinearity induced in atoms. Due
to the chirality of atomic nonlinearity, the phases and am-
plitudes of the forward- (right-) and backward-moving (left-
moving) probe fields are very different after passing through
atoms along two opposite directions. Therefore, both of opti-
cal isolator and circulator can be achieved with high isolation
ratio and low insertion loss. Because the induced nonlinearity
is chiral, our proposals circumvent the problem of dynamic
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reciprocity, and may provide a new cavity-free route for non-
linear optical isolators and circulators.

System and model. — Our setup is depicted in Fig. 1.
We first consider a waveguide (WG) embedded with N-type
atoms [46–50], see the upper waveguide in Fig. 1(a). We
apply the classical switching and coupling fields to induce
the phase shift φ, and amplitude modulation ξ of the probe
field. To a good approximation, we treat the waveguide as a
1D space. If the forward and backward amplitude transmis-
sions ξ f and ξb are sufficiently different after the probe field
passes through the ensemble of atoms, then we can realize
a two-port optical isolator. By carefully choosing the den-
sity and length of the atomic vapor and properly arranging the
switching and coupling fields, we can obtain a phase shift dif-
ference, ∆φ = φ f −φb, approaching π with high transmissions
ξ f and ξb. This can provide a four-port optical circulator by
adding a lower waveguide to form a Mach-Zehnder interfer-
ometer (MZI).

We consider a N-type configuration using Rubidium (Rb)
atoms to create the chiral XKerr nonlinearity. The state |2〉
decays to states |1〉 and |3〉 with rates γ21 and γ23, respectively.
The state |4〉 decays at a rate γ43. The dephasing rates of both
ground states |1〉 and |3〉 are Γ. For simplicity, we assume
γ21 = γ23 = γ34 = γ0 and Γ � γ0; and set γ0 = 2π × 6 MHz
[51]. The XKerr nonlinearity can be efficiently induced be-
tween the probe and switching fields in the configuration
shown in Fig. 1(b), and can be modified by the coupling
laser [52]. The switching, coupling, and probe laser beams
have carrier frequencies ωs, ωc, and ωp, corresponding to
wave vectors ks, kc, and kp, respectively. The switching (cou-
pling, probe) field drives the transition |1〉 ↔ |2〉 (|3〉 ↔ |2〉,
|3〉 ↔ |4〉) with a detuning ∆s (∆c,∆p) in the absence of ther-
mal motion. At room temperature, the inevitable random ther-
mal motion of the jth atom moving with velocity v j causes the
“microscopic” Doppler shifts, ksv j, kcv j, and kpv j in the cor-
responding atomic transitions, respectively. The strength of
the nonlinearity is strongly dependent on the effective detun-
ings, and thus the Doppler shifts. Thus, these frequency shifts
change the optical nonlinearity in a way strongly dependent
on the propagation direction of the probe field with respect to
the switching and coupling fields, leading to the chiral XK-
err nonlinearity. We assume that |ks| = |kc| = |kp| = k. Both
the switching and coupling laser beams are left-moving such
that ksv j = kcv j. In the above arrangement, the backward-
moving (forward-moving) probe field “sees” the same (oppo-
site) Doppler shift as the switching and coupling ones. Under
the two-photon resonance condition, i.e. ∆c = ∆s = δ, and
|Ωs| � |Ωc| leading to ρ11 ≈ 1, we can solve the master equa-
tion with the perturbation approach [53–55] and obtain the to-
tal XKerr nonlinearity averaged over the velocity distribution
as [56–60]

χ f = X0

∫
γ23

(i∆p + γ43)

(
1
ζ

+
1
ζ∗

)
N(v)dv , (1)

for the forward-moving probe field, and

χb = X0

∫
γ23

[i(∆p + 2kv) + γ43]

(
1
ζ

+
1
ζ∗

)
N(v)dv , (2)

in the backward-moving case, where X0 =

3πc2γ43/8ω2
pΓ3(γ21 + γ23), ζ = i(δ + kv) + (γ21 + γ23 +

Γ3) + |Ωc|
2/2Γ3, and c is the vacuum light speed. The velocity

distribution is conventionally taken to be Maxwellian, i.e.
N(v) = Nae−v2/u2

/
√
πu, where u is the room-mean-square

atomic velocity, and ku ≈ 2π×300 MHz for Rb atoms at room
temperature [61]. In our arrangement, the linear susceptibility
of the probe light is vanishingly small and can be neglected
because ρ33 ≈ 0. Compared with the backward input case,
where the Doppler broadening significantly reduces the total
XKerr nonlinearity [see Eq. (2)], the Doppler shift “seen” by
the forward-moving probe field is partly compensated [see
Eq. (1)] and subsequently the nonlinearity remains large.
This chirality is a combination of thermal motion and the
unidirectionality of the switching and coupling lasers. The
Doppler shift is due to the atomic thermal motion. The
unidirectionally propagating switching and coupling lasers
break the spatial symmetry, leading to a direction-dependent
response to the probe laser. Without the switching and
coupling fields, the thermal motion sharply suppresses the
atomic susceptibility in both directions. If the control fields
in EIT are applied to atoms from two opposite directions,
thermal motion will be detrimental [39, 40]. In the two
latter cases, the chirality disappears. Note that the reduced
absorption in the “two-photon Doppler-free” configuration
for EIT in a 3D atomic sample has been observed [62]. The
two-port non-reciprocal transport has been experimentally
demonstrated as a result of atomic thermal motion and the
strong atom-cavity coupling [63]. However, cavity-free
optical isolation exploiting thermal motion is conceptually
different and admirable because its realization can be simpler
and it can implement multiport optical circulators.

Unlike the configurations for quantum gates [51] and non-
destructive detection of photons [64], the applied switching
and coupling modes are chosen here to be much stronger than
the probe laser beam. The backaction on the switching field
due to the probe photon is negligible. Thus, they can be con-
sidered as constant in atoms. We apply the slowly-varying en-
velope approximation to the probe field. The backscattering is
negligible during the propagation, and the probe photon prop-
agates unidirectionally [51, 65]. When |Ωc| � |Ωs| � |Ωp|,
the propagation of the probe pulse in atoms is described by
Maxwell equations by taking into account the XKerr nonlin-
earity [66, 67]:

∂Ω
f
p(z, t)
∂z

+
1
c
∂Ω

f
p(z, t)
∂t

= −χ f |Ωs|
2Ω

f
p(z, t) , (3)

∂Ωb
p(z′, t)

∂z′
+

1
c

∂Ωb
p(z′, t)

∂t
= −χb|Ωs|

2Ωb
p(z′, t) , (4)

for the forward- and backward-moving probe pulses, respec-
tively, and z′ = L−z. When χ f = χb as in usual Kerr nonlinear



3

isolators, the medium is reciprocal for the probe beam. How-
ever, the medium can be non-reciprocal even for two weak
counter-propagating probe beams co-existing in the medium
simultaneously when χ f and χb are very different. Therefore,
optical isolators or circulators using this chiral medium can
overcome the dynamical reciprocity in conventional nonlinear
isolators [25]. We focus on the steady-state solution, where
a long probe pulse is constant in time at position z [51], such

that 1
c
∂Ω

f
p

∂t ≈ 0 and 1
c
∂Ωb

p

∂t ≈ 0. After passing through the atomic
medium with length L, the probe fields become

Ω
j
p(L) = ξ jeiφ jΩ

j
p(0) , (5)

where ξ j = exp(−Re[χ j]|Ωs|
2L) and φ j = −Im[χ j]|Ωs|

2L, with
j = f , b, are the corresponding transmission amplitude and
phase shift, respectively. When |∆p| � γ43 and |Ωc|

2/2Γ3 �

|δ+kv|, to a good approximation, we have φ f ≈ NaL 3πc2

4ω2
p

γ0
∆p

|Ωs |
2

|Ωc |
2

and ξ f ≈ exp
(
−NaL 3πc2

4ω2
p

γ2
0

∆2
p

|Ωs |
2

|Ωc |
2

)
. The transmission is calcu-

lated as |ξ j|
2. In contrast, the transmission and phase modula-

tion of the backward-moving probe laser are much smaller.
Obviously, an optical isolator can be realized when ξ f �

ξb. For ξ f ≈ ξb and φ f − φb ≈ π, an optical circulator could
be made by inserting the atomic vapor in a MZI, as shown in
Fig. 1(a). To achieve that, two beam splitters (BSs) are needed
to first divide the input probe pulse into two paths and then
mix them after passing through the nonlinear medium. The
two BSs are chosen to be identical with reflection and trans-
mission amplitudes of sin θ and cos θ, respectively. The rela-
tive phase in these amplitudes is ϕ. Their operation on photons
is determined by HBS = θeiϕâ†inb̂in + θe−iϕâinb̂†in [68]. A fixed
phase shift ϑ in the lower path compensates the phase shift
φb of the backward-moving probe laser beam caused by the
nonlinear medium. Therefore, the backward-moving probe
photons entering the BS1 has the same phase in the upper
and lower waveguides. Applying HBS and the transmission
relation Eq. 5, we obtain the forward transmission matrix ele-
ments between the input and output ports as

T12 =

∣∣∣∣∣ ao

ain

∣∣∣∣∣2 =
∣∣∣ξ f ei(φ f−ϑ) cos2 θ − sin2 θ

∣∣∣2 , (6a)

T32 =

∣∣∣∣∣ ao

bin

∣∣∣∣∣2 =
∣∣∣(1 + ξ f ei(φ f−ϑ)) cos θ sin θ

∣∣∣2 , (6b)

T14 =

∣∣∣∣∣ bo

ain

∣∣∣∣∣2 =
∣∣∣(1 + ξ f ei(φ f−ϑ)) cos θ sin θ

∣∣∣2 , (6c)

T34 =

∣∣∣∣∣ bo

bin

∣∣∣∣∣2 =
∣∣∣cos2 θ − ξ f ei(φ f−ϑ) sin2 θ

∣∣∣2 , (6d)

where Tmn is the transmission coefficient from port m to port n,
with m, n = 1, 2, 3, 4. Exchanging the inputs and the outputs,
and replacing ξ f and φ f with ξb and φb in Tmn, respectively, we
obtain the transmission matrix element Tnm for the backward-
moving case. Optical non-reciprocity requires Tmn , Tnm for
m , n. We have Tmm = 0 in the circulator. Also, the backscat-
tering to ports at the same side as the input is negligible, so

FIG. 2. (Color online) Transmission of an isolator for the right-
moving (blue curves) and left-moving (red curves) probe fields, and
isolation ratio (green curves associating with the right vertical axis)
as a function of the probe detuning ∆p. Solid (dashed) curves are
for L = 2 (4) cm. Other parameters are Na = 5 × 1012 cm−3,Γ3 =

0.1γ0,Ωc = 20γ0,Ωs = 4γ0, and δ = 0.

that T31 = T13 = T41 = T14 (see details in the supplemen-
tary material). An ideal circulator, in which the photons flow
along 1 → 2 → 3 → 4 → 1, has a transmission matrix T id

with elements T id
12 = T id

23 = T id
34 = T id

41 = 1 and others zero.
Note that Tr[T id · T id,T ] = 4.

Hereafter, we take δ = 0 and ωp/2π ∼ 384 THz for the
D1 line of Rb atoms, and choose the parameters Na = 5 ×
1012 cm−3, Γ3 = 0.1γ0, Ωc = 20γ0, and Ωs = 4γ0, yielding
ρ11 ≈ 0.96. Such large switching light can enhance the cross
phase modulation of the probe field.

Isolator. — For a cm-scale medium, e.g. L = 2 cm,
the medium is absorptive. The forward and backward trans-
missions are very different, see Fig. 2. As the probe de-
tuning increases, the forward transmission T12 rapidly in-
creases to a high value of 0.80 at ∆p = 35.6γ0, correspond-
ing to an insertion loss of 1 dB. Due to Doppler broadening,
the backward-moving probe field suffers a larger absorption.
Therefore, the backward transmission T21 is much smaller
than T12, when 35.6γ0 < ∆p < 60.6γ0. In this region, the
insertion loss is smaller than 1 dB, while the isolation ratio
is larger than 15 dB. The isolation ratio can be considerably
improved with a large forward transmission by using a longer
medium, or equivalently increasing the atomic density. The
non-reciprocal window of frequency slightly moves to larger
detuning. For L = 4 cm, the isolation ratio can reach more
than 30 dB in the range of 50γ0 < ∆p < 60γ0, yielding an
isolation bandwidth of 2π × 60 MHz. At the same time, the
insertion loss remains low, less than 1 dB. Thus, we can sim-
ply use this medium as an isolator.

Circulator. — For a short medium, the transmissions of
the forward- and backward-moving probes can be comparably
high. However, at a particular probe frequency, the phase shift
difference between these two opposite propagating probes can
approach π. As shown in Fig. 3(a), for L = 3.33 mm, the
phase shift φb is always small, specifically about 0.011π at
∆p = 7.77γ0. In contrast, φ f exponentially decays from about
2π at ∆p = 3.5γ0 to 0.5π at ∆p = 15.5γ0. At the optimal point



4

FIG. 3. (Color online) Circulator performance versus the detuning
∆p. (a) Phase shifts (blue curves) and transmission amplitudes (red
curves) for right- (solid curves) and left-moving (dashed lines) probe
fields as a function of the probe detuning ∆p. (b) Fidelity (green
curves) and average insertion loss (blue dashed curves) of an optical
circulator as a function of ∆p. The vertical black dashed lines in the
two figures show the optimal detuning ∆

opt
p /γ0 = 7.77 when φopt

f −

φ
opt
b = π and ξopt

f ≈ ξ
opt
b ≈ 0.66. The length of the atomic medium is

3.33 mm. Other parameters are as in Fig. 2.

∆
opt
p = 7.77γ0, the difference of phase shifts, φ f − φb, reaches

the optimal value of π. At this point, ξopt
f ≈ ξ

opt
b ≈ 0.66. Thus,

a high-performance circulator can be made by inserting this
nonlinear medium into a MZI composed of unbalanced BSs.
Here, we set ϑ = 0.01π and sin2 θ = 0.4 ≈ ξ̄/(1 + ξ̄) with
ξ̄ = (ξopt

f + ξ
opt
b )/2.

The performance of a circulator can be quantified with the
fidelity F and the average photon survival probability η [43].
The fidelity is evaluated as the overlap of the renormalized
transmission matrix T̃ = (Ti j/ηi), with the ideal one, T id.
Here, ηi =

∑
k Ti,k is the survival probability of the probe

photons entering port i. The average operation fidelity of the
circulator is then F = Tr[T̃ · T id,T ]/Tr[T id · T id,T ], giving the
probability of a correct circulator operation averaged over var-
ious inputs. The minimum fidelity is F = 0, while an ideal
operation yields F = 1. The average photon survival prob-
ability η =

∑
i ηi/4 is another important figure characterizing

the four-port circulator. We scan the probe frequency to find
the working window of the circulator in Fig. 3. As the de-
tuning ∆p varies from 6γ0 to 20γ0, the fidelity first rises up
rapidly and reaches the maximum 0.944 at ∆

opt
p = 7.77γ0, then

decreases to a small value of 0.63. During this sweep, η in-
creases from 0.68 to about 0.83. Although the photons have
a larger probability to survive at a large detuning, the fidelity
is low. As a trade-off, the circulator operating within the fre-
quency range 6.6γ0 < ∆p < 9.7γ0 can achieve a fidelity larger
than 0.9 at the expense of η > 0.69 . The corresponding work-
ing window is about 2π × 20 MHz and the average insertion
loss is about 1.6 dB. If ϑ = 0, the fidelity and insertion loss
only reduce very slightly.

At ∆
opt
p , we obtain F = 0.944 and η = 0.72, yielding

an insertion loss of 1.42 dB. The corresponding transmission
matrix is shown in Fig. 4. The obtained matrix is close to
that of the ideal circulator, implying that a good optical non-
reciprocity is obtained. We can also quantify the circulator
performance by the isolations, Ii = −10 log(Ti+1,i/Ti,i+1), of
the four optical isolators formed between adjacent ports [43]
and have {Ii} = {41.7, 13.8, 13.8, 8.2} dB with i = {1, 2, 3, 4},

FIG. 4. (Color online) Transmission matrix of an optical circulator
at the optimal point, ∆

opt
p /γ0 = 7.77. The numbers inside the color

squares are the transmission between the two ports. The transmis-
sions in white areas are zero. Other parameters are as in Fig. 3.

implying non-reciprocal photon circulation along 1 → 2 →
3 → 4 → 1. The achieved performance is already useful for
practical optical isolation [43].

Implementation. — The required 1D nonlinear waveguide
embedded with alkali atoms can be made with various meth-
ods and platforms [42, 46–50, 69–74]. A feasible platform can
be a cm-scale hollow-core photonic crystal fiber filled with
Rb atoms at room temperature [49, 74]. A few-photon-level
memory and a strong XKerr nonlinearity have been demon-
strated with a weak control field in such platform [49, 74].
For an on-chip realization, we consider a zigzag waveguide
cladded with high-density Rb atoms, allowing a coherent
light-atom interaction [71–73]. To conduct a N-type config-
uration, we couple the lasers to the D1 lines of the Rb atom,
yielding ωp/2π ∼ 384 THz. A linearly-polarized probe field
drives the transition |52S 1/2, F = 2,ms = 0〉 ↔ |52P1/2, F′ =

2,m′s = 0〉. The linearly-polarized switching light couples
to |52S 1/2, F = 1,ms = −1〉 ↔ |52P1/2, F′ = 1,m′s = −1〉.
The strong left-circularly-polarized coupling field is applied
between |52S 1/2, F = 2,ms = 0〉 ↔ |52P1/2, F′ = 1,m′s = −1〉.
Thus, the optical isolation can be performed for a linearly-
polarized light.

Conclusion. — We have presented new ways to realize opti-
cal isolators and circulators using chiral XKerr nonlinearity of
N-type atoms embedded in a 1D waveguide. The four-port op-
tical circulator can reach a high fidelity of 0.9 and a small in-
sertion loss of 1.6 dB. Our proposal may provide a new vision
for nonlinear optical isolation without dynamic reciprocity be-
cause the XKerr nonlinearity itself is chiral, and the isolation
is based on the linear Eqs. 3 and 4. A large XKerr nonlinearity
has been reported at the single-photon level [49, 51]. There-
fore, our method can be extended to the quantum regime, real-
izing an optical circulator for a single-photon probe on a chip
at room temperature.
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