
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Duplication, Collapse, and Escape of Magnetic Skyrmions
Revealed Using a Systematic Saddle Point Search Method

Gideon P. Müller, Pavel F. Bessarab, Sergei M. Vlasov, Fabian Lux, Nikolai S. Kiselev,
Stefan Blügel, Valery M. Uzdin, and Hannes Jónsson

Phys. Rev. Lett. 121, 197202 — Published  6 November 2018
DOI: 10.1103/PhysRevLett.121.197202

http://dx.doi.org/10.1103/PhysRevLett.121.197202


Duplication, collapse and escape of magnetic skyrmions revealed using a systematic
saddle point search method

Gideon P. Müller,1, 2, 3 Pavel F. Bessarab,1, 4 Sergei M. Vlasov,1, 4 Fabian Lux,2, 3

Nikolai S. Kiselev,2 Stefan Blügel,2 Valery M. Uzdin,4, 5 and Hannes Jónsson1, 6, ∗

1Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
2Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

3RWTH Aachen University, D-52056 Aachen, Germany
4ITMO University, 197101, St. Petersburg, Russia

5Dpt. of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
6Dpt. of Applied Physics, Aalto University, FIN-00076 Espoo, Finland

Various transitions that a magnetic skyrmion can undergo are found in calculations using a method
for climbing up the energy surface and converging onto first order saddle points. In addition to
collapse and escape through a boundary, the method identifies a transition where the skyrmion
divides and forms two skyrmions. The activation energy for this duplication process can be similar
to that of collapse and escape. A tilting of the external magnetic field for a certain time interval is
found to induce the duplication process in a dynamical simulation. Such a process could turn out
to be an important avenue for the creation of skyrmions in future magnetic devices.

Localized, non-collinear magnetic states are receiving
a great deal of attention, where skyrmions have come
under special focus. Along with interesting transport
properties, skyrmions exhibit particle-like behaviour and
carry a topological charge enhancing their stability with
respect to uniform ferromagnetic background. In addi-
tion to the interest in their intriguing properties, they
have been suggested as a basis for technological applica-
tions e.g. data storage or even data processing devices
[1, 2]. A racetrack design of a memory device has been
outlined where a spin polarized current drives a chain of
skyrmions past a reading device [3, 4]. The effect of tem-
perature and external magnetic field on the stability of
the skyrmions need to be studied, as well as ways to gen-
erate and manipulate them. The effect of defects is also
an important consideration [5, 6]. Two mechanisms for
the annihilation of skyrmions have been characterized by
theoretical calculations of atomic scale systems: Collapse
of a skyrmion to form ferromagnetic state [7–11] and es-
cape of a skyrmion through the boundary of the magnetic
domain [9–12]. The effect of a non-magnetic impurity has
also been calculated [11]. By using harmonic transition
state theory for magnetic systems [14, 15], the lifetime of
skyrmions has been estimated [11, 12]. Parameter values
obtained from density functional theory [13] are found
to give results that are consistent with experimental ob-
servations [16, 17]. The challenge is to design materials
where magnetic skyrmions are small enough while being
sufficiently stable at ambient temperature, and to de-
velop methods for manipulating them.

Theoretical calculations can help accelerate this devel-
opment by identifying the various possible transforma-
tions that a skyrmion can undergo at a finite temperature
on a laboratory time scale. This can be achieved by the
use of rate theory where the major challenge is to find
the relevant transition mechanisms. If the final state of a
transition is specified, in addition to the initial state, the

geodesic nudged elastic band (GNEB) method [7, 18] can
be used to find the minimum energy path of the transition
and, thereby, the activation energy which is the highest
rise in energy along the path. However, the final states
of possible transitions are not always known. Another
category of methods for identifying possible transition
mechanisms where the final states are not specified, only
the initial state, has turned out to be highly valuable
in a different context, namely in studies of atomic re-
arrangements such as chemical reactions and diffusion
events [19, 20]. Unexpected transition mechanisms have
in many cases turned out to be preferred over mecha-
nisms that seem a priori most likely [21].

Here, we describe a method that can be applied to
identify transition mechanisms in magnetic systems with-
out specifying final states. It represents an adaptation of
a method that has been used extensively in studies of
atomic rearrangements. A complication arises from the
fact that magnetic systems are characterized by the ori-
entation of the magnetic moments while the length of the
magnetic moments is either fixed or obtained from self-
consistency calculations [22]. The configuration space is
therefore curved. The method is first described briefly,
with more detailed information in Supplemental Material
[23], and then an application to a magnetic skyrmion is
presented where, in addition to collapse and escape, the
method gives a mechanism and activation energy that has
not been reported before: Duplication of a skyrmion. Fi-
nally, a dynamical simulation is described where a time
dependent external field is used to induce such an event.

Within harmonic transition state theory [14, 15, 19],
the mechanism and rate of a thermally induced transi-
tion is characterized by the first order saddle point [24]
representing the bottleneck for the transition. Given an
initial state corresponding to a local energy minimum,
the various possible transitions the system may undergo
can be identified by climbing up the energy surface and
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converging on the various first order saddle points on
the energy ridge surrounding the minimum. A version
of this approach, referred to as minimum mode following
[26, 27], is illustrated for a single-spin test system in Fig.
1. The method is based on the evaluation of eigenvalues
and corresponding eigenvectors of the Hessian, H. First,
the region near the minimum, the convex region where
all eigenvalues of the Hessian are positive, is escaped by
following, for example, the gradient of the energy. Alter-
natively, a random vector or one of the eigenvectors of
H can be followed to escape the convex region. Once an
eigenvalue turns negative, an effective force

F eff = F − 2(λ̂ · F ) λ̂, (1)

is followed, where F = −∇H is the negative gradient
of the energy and λ̂ is the normalized eigenvector cor-
responding to the negative eigenvalue. Note that these
vectors are 3N -dimensional for a system with N spins.
As the system is displaced in the direction of the effec-
tive force, it moves to higher energy along λ̂ but to lower
energy along the orthogonal degrees of freedom. Eventu-
ally, this brings the system to a first order saddle point
on the energy surface. The final state of the transition
can be obtained by a slight displacement further along λ̂,
followed by energy minimization.

This approach has not, to the best of our knowledge,
been applied previously to a magnetic system. Here, the
configuration space Mphys is given by the direct prod-
uct of N spheres. In order to apply the mode follow-
ing method, knowledge of second order derivatives is re-
quired but, as is well-known from the theory of Rieman-
nian manifolds, they need to be treated with special care.
The Hessian can be calculated by application of covariant
derivatives, but their evaluation in spherical coordinates
is usually cumbersome and suffers from singularities at
the poles.

A more convenient approach is offered by viewing the
configuration space as being embedded in a surrounding
euclidean space E ⊃ Mphys. In this larger space, sec-
ond order derivatives are easily performed. The Hessian
in the physical subspace can then be reconstructed by a
projection operator approach [28]. For any scalar func-
tion f on the manifoldMphys, this true Hessian is defined
as

Hess f(x)[z] = Px∂
2f̄(x)z +Wx(z, P⊥x ∂f̄), (2)

where z is a vector tangent to the manifold, Px and P⊥x
are the projectors onto the tangent space and onto the
normal space, respectively, to the surface of the manifold
at a point x on the sphere, f̄ is the smooth extension
of f to the Euclidean space, and Wx is the Weingarten
map at x. The Weingarten map, sometimes also referred
to as the shape operator, describes the curvature of 2D
surfaces in terms of an embedding space.

For a Hamiltonian H of a spin system, the matrix rep-
resentation of the Hessian is obtained by its action on the

FIG. 1. An illustration of a method for climbing up the
energy surface from an initial state minimum to a first order
saddle point. The system contains only a single spin (see
[23]) and because only the orientation of the magnetic vector
can change, the energy surface can be mapped onto a sphere.
The local energy minima (blue) are separated by an energy
ridge where points of low energy correspond to first order
saddle points (black ×). The red curves illustrate saddle point
search paths starting from various points. In this illustration,
the system is made to follow the gradient of the energy until
the lowest eigenvalue of the Hessian becomes negative (at the
white dashed line). Beyond that point, the system is displaced
along the effective force given by Eq. (1). This brings the
system to a first order saddle point on the energy surface.

basis vectors (see [23]), i.e.,

Hij = TT
i H̄ijTj − TT

i I(nj · ∇jH̄)Tj , (3)

where the indices i and j denote spins, H̄ = ∂2H̄(x),
I is the 3 × 3 unit matrix and Ti is the 3 × 2 matrix
that transforms into the tangent space of spin i. As the
Hessian matrix given by Eq. (3) is represented in 2N ,
the evaluation of an eigenmode in the 3N -representation
requires a transformation, i.e. λ|3N = Tλ|2N (see [23]).

The formulation of the constrained Hessian given by
Eq. (3) and the saddle point search method described
above have been implemented in the Spirit [29] software
and used here to analyse transitions from a magnetic
skyrmion state. The energy of the system is described
by an extended Heisenberg model

H = −µS

N∑
i=1

H ·ni− J
∑
〈ij〉

ni ·nj −D
∑
〈ij〉

d̂ij · (ni×nj),

(4)
where H is a uniform external magnetic field, ni is the
magnetic moment of spin i, J is the exchange coupling
between nearest neighbor spins, the parameter D and
unit vector d̂ij give the Dzyaloshinskii-Moriya vector in
the plane of the lattice parallel to the vector connecting
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the two nearest neighbors i and j. The sums include only
distinct nearest neighbor pairs. The system consists of
40×40 spins on a square lattice with free boundary con-
ditions and the parameter values and field strength are
chosen to be the same as in a recent theoretical study [30]
(values are given in [23]). The Bloch skyrmion, shown in
Fig. 2, is metastable with respect to the ferromagnetic
phase.

Fig. 2 shows an illustration of the eigenvectors corre-
sponding to the three lowest eigenvalues. They corre-
spond to translation, breathing and elliptical distortion
[31]. In order to escape from the convex region, we have
chosen here to follow each one of these three modes un-
til the corresponding eigenvalue becomes negative. After
that, the system is displaced in the direction of the ef-
fective force given by Eq. (1), where λ̂ is the eigenvector
of the initially selected mode rather than the one with
lowest eigenvalue.

FIG. 2. Top panel: (Left) Minimum energy configuration of
the skyrmion. (Right) Minimum energy paths for the three
types of transitions found: Duplication, collapse and escape.
The reaction coordinate is the scaled total displacement along
the path. The energy is given in units of the exchange cou-
pling constant, J . Middle panel: Saddle point configurations
found for escape through a boundary (left), radial collapse
(middle) and duplication (right). Bottom panel: The transla-
tional, breathing and elliptical eigenmodes of the skyrmion in
the minimum energy configuration, each leading to the saddle
point displayed directly above.

By following the translational mode, the mode that has
lowest eigenvalue initially, the skyrmion moves towards
the edge of the system and eventually, as it is pushed
along the effective force, converges on a saddle point cor-

responding to an escape through the edge. Relaxation of
the system after a slight displacement along the unstable
mode at the saddle point brings the system to the fer-
romagnetic state. Similarly, by following the breathing
mode, the second lowest eigenvalue mode, the skyrmion
shrinks and eventually, converges to a saddle point cor-
responding to collapse. Again the final state of the tran-
sition is the ferromagnetic state. However, by following
the elliptical mode, the skyrmion becomes stretched and
converges on a saddle point corresponding to a division
of the skyrmion and formation of two skyrmions. While
the initial state contains one skyrmion, the final state
contains two.

The energy along the minimum energy paths for the
three transitions is shown in Fig. 2. These were calcu-
lated using the geodesic nudged elastic band method [7]
using an initial path formed by linear interpolation be-
tween the intial state and the saddle point, as well as
between the saddle point and the final state. The activa-
tion energy for the collapse and escape is quite similar,
but the activation energy for the duplication is higher
in this case. The relative height of the energy barriers
for the three processes depends on the parameter values.
A calculation using a 10% smaller field and 60% larger
value of D/J gives a lower activation energy for duplica-
tion than the other two transitions [23].

The shape of the three curves is quite different. The
total displacement along the paths from the initial state
to the saddle point is shortest for the duplication, while
the displacement of the skyrmion to the boundary and to
the saddle point for escape involves the largest displace-
ment. The energy profile for the collapse is similar to
what has been presented before, a gradual shrinkage of
the skyrmion to the saddle point followed by abrupt drop
of the energy to that of the ferromagnetic state [7, 8].

The duplication of the skyrmion leads to an increase
in the energy of the system because the skyrmion is only
metastable with respect to the ferromagnetic state for
this set of parameters, while the other two transitions
lead to a decrease in the energy. The energy along the
minimum energy path past the saddle point for dupli-
cation contains important information about skyrmion
interaction. It shows how the repulsive interaction be-
tween skyrmions varies with the distance between them.
Going from right to left along the mininum energy path
in Fig. 2 shows how two skyrmions can merge to form
one skyrmion.

The duplication transition identified here has not been
described previously, but may turn out to be an impor-
tant mechanism for generating skyrmions. The first order
saddle point on the energy surface corresponding to this
mechanism can be found for a wide range of parameter
values, as will be described in detail in a later publica-
tion. For example, we have found the duplication saddle
point for a Pd/Fe bilayer on an Ir(111) substrate, a sys-
tem that has been studied extensively, using parameter



4

t = 0	ps, 	 𝐻) = 0	𝐻* t = 100	ps, 	 𝐻) = 0.63	𝐻* t = 200	ps, 	 𝐻) = 0	𝐻* t = 210	ps, 	 𝐻) = 0	𝐻* t = 400	ps, 	 𝐻) = 0	𝐻*

FIG. 3. Snapshots from a dynamical simulation where the duplication of a skyrmion is induced by applying a magnetic pulse
over 200 psec, giving a total field that is tilted with respect to the normal to the plane. (see [23] for parameter values). The
labels on top of the frames give the time and magnetic field of the pulse (which adds to a constant field in the direction of the
normal to the plane). The pulse is applied at time t=0 and lasts until t=200 ps. At the end of the pulse, an elongated defect
is formed which later splits up (at t=209 ps) to form two skyrmions.

values that give close agreement with experimental re-
sults [12, 13]. There, the energy barrier for duplication
turns out to be slightly lower than that of collapse, 78
meV vs. 80 meV.

The question now arises whether it is possible to in-
duce the duplication event dynamically. We address this
by performing a dynamical simulation where a short mag-
netic pulse is applied in addition to the stationary mag-
netic field. The pulse is represented by a uniform mag-
netic field which has both in-plane and out-of-plane com-
ponents. For the duration of the pulse, 200 ps, the total
magnetic field is tilted (see [23]). This is known to be
an efficient way of exciting nonlinear skyrmion dynam-
ics [32]. The saddle point searches show that an excita-
tion of the elliptical mode can induce duplication. Fig. 3
shows shapshots from the simulation. During the pulse,
an elongated structure is formed. After the pulse has
been turned off, it splits up and eventually two skyrmions
remain in the system. In addition to the elliptic elonga-
tion, the duplication also requires the deformed structure
to be bent in order for it to divide up. The bending corre-
sponds to another eigenmode of the elongated skyrmion.
More efficient and/or reliable ways of achieving the dupli-
cation process could be devised, for example by pinning
the skyrmion, introducing defects or by other more elab-
orate external stimuli. The simulation described here
is merely meant to show that it is possible to induce
skyrmion duplication in a rather simple way.

We have presented here a method that can be used
to search for transition mechanisms and determine the
activation energy for transitions in magnetic systems. It
represents an adaptation of mode following methods that
have been used for several years in studies of atomic rear-
rangements. The fact that magnetic transitions involve
rotations of the magnetic vectors leads to constraints that
need to be incorporated into the Hessian matrix in order
to determine the low lying eigenvalues and corresponding
eigenvectors. Saddle point searches where only the ini-
tial state of the transition is specified, such as the ones
carried out here, are more challenging than a minimum
energy path calculation where both the initial and final

states are specified, but they have the advantage of being
able to reveal unexpected transitions and unknown final
states. In the application calculations presented here, we
have chosen to drive the system out of the convex region
by following a particular mode. We note that, eigenval-
ues may cross and modes change direction as the system
is pushed along a specific mode, so care should be taken
to remain on the same mode throughout the saddle point
search (see [23]).

Applications of the saddle point search method pre-
sented here to three-dimensional systems can be expected
to yield even larger variety of mechanisms than for two-
dimensional systems since more possibilities open up
with the additional dimension. For example, cylindri-
cal skyrmions can contract and form bobbers [30] and
possibly other previously unknown magnetic structures.

A saddle point search method that only requires the
initial state as input (unlike the GNEB method where
the final state also needs to be specified), can be used to
sample an energy surface in a systematic way and search
for possible states of the system, each state corresponding
to a local energy minimum. The search takes the system
from one local minimum to another via first order saddle
points. This can be used as the basis of a simulation of
the long time scale evolution of a system that undergoes
thermally activated transitions that may be enhanced by
an external field. For each state visited, multiple saddle
point searches are carried out to identify the most rele-
vant, low energy saddle points. The transition rate cor-
responding to each saddle point can be estimated using
harmonic transition state theory, and a random number
used to choose which transition will occur next based on
the normalized rates. This is referred to as adaptive ki-
netic Monte Carlo algorithm [33]. The simulated time
can be estimated from the sum of rates. This approach
has been used as the basis for simulations of long time
scale evolution of complex atomic systems where atomic
rearrangement events can involve non-intuitive displace-
ments of multiple atoms [34, 35]. The adaptation pre-
sented here of the saddle point search method to spins
opens the possibility of carrying out such long time scale
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simulations of magnetic systems.
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