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The built-in potential is of central importance to the understanding of many interfacial 

phenomena because it determines the band alignment at the interface. Despite its 

importance, its exact sign and magnitude have generally been recognized as ill-defined 

quantities for more than half a century. Here, we provide a common energy reference of 

bulk matter which leads to an unambiguous definition of the built-in potential and innate 

(i.e., bulk) band alignment. Further, we find that the built-in potential is explicitly 

determined by the bulk properties of the constituent materials when the system is in 

electronic equilibrium, while the interface plays a role only in the absence of equilibrium. 

Our quantitative theory enables a unified description of a variety of important properties 

of interfaces, ranging from work functions to Schottky barriers in electronic devices. 
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     Many intriguing phenomena in nature occur at interfaces. Understanding their behavior is of 

great interest not only for the study of exciting physics such as highly conducting electrons at the 

interfaces between insulators [1-4], but also for their direct relevance to virtually all device 

applications – as coined by Herbert Kroemer [5], “the interface is the device.” A basic question 

in these studies is the nature of the charge transfer or variation at the interface that causes the 

built-in potential between two dissimilar materials. The built-in potential exists at any type of 

interface [6-8], and it determines a number of fundamental properties in surface/interface science 

[6-12], such as work functions, electrode potentials, redox potentials, Schottky barriers, and band 

offsets. Despite more than 50 years of investigation, however, it has not been possible to 

determine the exact sign and magnitude of the built-in potential [7-11]. The absence of a clear 

understanding of the built-in potential has led to the introduction of numerous terminologies and 

definitions depending on the field of science and/or purpose. A rigorous definition of the built-in 

potential is a prerequisite for a quantitative description of many interfacial phenomena and 

promises a fundamental breakthrough in our understanding of electronic/electrochemical devices 

[9,11].  

     A large amount of effort for elucidating the built-in potential can be roughly categorized into 

two schools of thought. In the first school, the built-in potential is described by the properties of 

the individual constituent materials. These efforts follow the tradition of building a theoretical 

framework to understand a complex system from the innate properties of its basic components. 

Such constructionist approaches have led to numerous failures in interface science, including 

Schottky barriers and band offsets [9-12]. As a result, in recent years this basic theoretical 

approach has been largely neglected [13] in favor of a second school of thought which is typified 

by detailed quantum mechanical calculations of the specific material interfaces under study. In 

the second school, the built-in potential is specific to a particular interface. In this regard, the 

change of the planar averaged charge density, ( )zρΔ ,  is commonly integrated to obtain the 

built-in potential, . However, charge density-based methods have a fundamental limitation 

because there is no clear initial basis of comparison for determining ( )zρΔ and thus have 

remained a contentious issue [9-11,14-16]. Since both schools have serious limitations, the built-

in potential remains to be an ambiguous property despite its long history of being used to 

describe the band alignment at interfaces [6-12].  



3 
 

     In this work, we present a universal definition of the built-in potential that allows a unified 

quantitative description of the properties at any type of heterojunction interfaces. Based on the 

theory, we establish a new school of thought on the built-in potential: the built-in potential is 

determined by the bulk properties of the constituent materials, but only if the system is allowed to 

reach electronic equilibrium. As pictorially shown in Fig. 1, the key to our finding is identifying 

a common energy reference among dissimilar bulk materials (Fig. 1c). The magnitude of the 

built-in potential is then explicitly given by the electrostatic potential (Fig. 1d), rather than, as 

generally thought, the charge density. Using metal/metal and metal/semiconductor interfaces as 

examples, we show our general theory of built-in potential provides new perspectives into the 

study of interface science. 

     We begin by identifying a new reference energy in bulk. For this purpose, we insert vacuum 

into the bulk in a way that the surfaces have no effect on the average electrostatic potential of the 

non-vacuum regions of the bulk. We term this inserted vacuum the “ideal vacuum”, which is a 

local quantity associated with proximity to the surface. However, it should be distinguished from 

the “local (or near) vacuum” in the literature [6,9,17] which includes effects due to surface 

charge and ionic relaxation. The potential relative to the ideal vacuum reflects the bulk property 

instead of the solid/vacuum interface reflected in the near vacuum associated with work function 

measurements. Throughout the paper, we term the surface generated by an ideal vacuum 

insertion the “ideal surface” (Fig. 2a,b). 

     The question then is whether the potential of the ideal vacuum, ivV , can be uniquely defined. 

As shifts in the local potential of bulk with respect to vacuum are associated with planar surface 

dipoles, it is sufficient to consider a 1D system here, which is a planar average of the 3D system. 

One of our key findings is the relationship iv 0V V=  where $( )0 0V V= n  is a maximum value of 

the planar averaged electrostatic potential for a given orientation $n . Consider a periodic system, 

of length a, which contains a bulk region between Lz  and Rz  and vacuum elsewhere (Fig. 2b 

and 2d). The dipole moment, 
0

( ) ( )R

L

a z

z
d z z dz z z dzρ ρ⎡ ⎤= =⎢ ⎥⎣ ⎦∫ ∫ , can be integrated by parts to yield 

( )d aE a=  demonstrating that the d must vanish in order for the E-field to vanish in the vacuum 

region. Similarly, for a periodic bulk region, where the boundary of the material is still denoted 
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by Lz  and Rz , ( ) ( ) ( ) ( )R R L L L Rd z E z z E z z zφ φ= − + − , where due to periodicity ( ) ( )L Rz zφ φ=  

and ( ) ( )R LE z E z= . Since ( )R Lz z−  is a physical length which cannot vanish, the dipole 

moment, ( ) ( )R L Ld z z E z= −  , can only vanish when E independently vanishes at the boundaries, 

( )[ ( )] 0L RE z E z= = . Therefore, in order for the field to vanish in the vacuum, the field at the 

bulk boundary must also vanish. As zE φ= −∂ , the boundary with a vanishing E-field 

corresponds to either a maximum ( 0V ) or minimum in the planar average electrostatic potential 

— with the minima being excluded as they would unphysically cut through ions.  

     It is important to realize that the so-defined 0V  also depends on how to bulk is terminated at 

the surface. While multiple local maximum levels 0V  can exist in complex materials, such as 

perovskite oxides [3,4], a unique value of 0V  can always be chosen for a specified surface 

termination. This is shown schematically for a quaternary polar surface in Fig. 3a and 3b. We 

further define the “innate work function” of a surface 

 0 0
F ,V Eϕ = −  (1) 

where EF is the Fermi level. Both 0V  and EF are bulk properties, so 0ϕ  is also a pure bulk 

property (i.e., innate) and is related to the standard work function ϕ  by the surface dipole S, 

which accounts for the local potential changes due to charge and ion relaxation, i.e., 0 Sϕ ϕ= − . 

Note that S is a non-innate property which is also affected by the specifics of the interface, e.g. 

defects, disorder, or surface roughness. As an example, consider the (210) surface depicted in 

Fig. 3c. If it is terminated by the dashed line, 0V is aligned with the ideal vacuum. Due to the 

roughness, however, the material above the dashed line can have an associated dipole 

contributing to S. 

     Next, we imagine the interface formation in two steps: (i) the creation of an ideal A/B 

interface, which consist of two ideal surfaces of material A and B (Figs. 1a-c); (ii) allowing the 

electrons and ions to relax to find the ground state (Fig. 1d). Comparison of the average 

electrostatic potential of the systems in the above two steps yields a potential shift arising from 

the interfacial charge transfer, which is the very definition of the built-in potential. We find from 
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Fig. 1d that the built-in potential is simply defined as the difference between 0V  in bulk regions 

of the two materials,  

 0 0
A|B B A .V Vψ = −   (2) 

This happens because 0
AV  and 0

BV  for the two ideal surfaces (Figs. 1,2a) are aligned to the same 

energy before the charge transfer, which can be understood based on the principal of linear 

superposition of potentials [9]: consider, e.g., the superimposed A+B system with a vacuum 

region between A and B, the potential at the boundary of material A, which was previously iv
AV  

becomes iv iv
A BV V+ , due to the addition of a constant potential ( iv

BV ) introduced by system B in 

this region. Similarly, the potential at the boundary of material B also becomes iv iv
A BV V+ . 

Therefore, irrespective of an arbitrary constant added to either potential, the alignment shown in 

Fig. 1c ( 0 0
A BV V= ) is true.  

An important consequence of Eq. 2 is that in any type of heterojunction in electronic 

equilibrium, the built-in potential, A|Bψ , is determined entirely from the bulk properties of the 

material A and B. In such a case, the interface charge transfer takes place in order to align the 

Fermi level, i.e., F,A F,BE E= . This combined with Eqs. (1) and (2) yields  

 ( ) ( )0 0 0 0
A|B F F B AB A

E Eψ ϕ ϕ ϕ ϕ= + − + = −   (3) 

The innate properties of the individual constituent materials therefore dictate the built-in 

potential at the interface under equilibrium, irrespective of complex interfacial details. In other 

words, the built-in potential is subject to properties of the interface only when the system is not 

allowed to reach equilibrium.  

     To illustrate these definitions and conclusions we performed density functional theory (DFT) 

calculations on 12 different M/M heterojunction interfaces: Al/Ag, Al/Au, Ag/Au and Ni/Cu 

heterojunctions with interfaces along (100), (110) and (111). In each case, we calculate ψ  by the 

difference in 0V  through DFT-relaxed heterostructures (Eq. 2). These values are then compared 

to the value of ψ  calculated from the innate work functions via Eq. 3. We see from Table I 

essentially exact agreement, which is a direct consequence of Poisson’s equation. As a 
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comparison, we consider the work function difference ( B Aϕ ϕ− ) as A|Bψ  and find that it gives at 

best a crude estimate of the built-in potential. The inability of the ϕ -based approach can be 

understood as it includes charge relaxation into the vacuum, not present at the interface.  

     Next, we consider metal/semiconductor (M/S) interfaces. Fig. 4a illustrates the innate band 

alignment of the M/S junctions with n-doped semiconductors by aligning 0V , which can be 

obtained purely from bulk calculations without slab or heterojunction geometry considerations. 

After charge relaxation (Fig. 4b), a dipole at the interface is developed. Since the dipole is the 

sole source of the built-in potential, charge transfer effects at the immediate interface, such as 

chemical bonding, defects, and disorder, can only contribute higher order electrostatic terms 

(quadrupole, octupole, etc.), leading to the development of a potential barrier (or well), Δ , in the 

semiconductor region in Fig. 4b. An important advantage of introducing the innate band 

alignment is that it provides a clear distinction between innate and non-innate (i.e., interfacial) 

properties of heterojunctions, which has long been ambiguous [9-12,14-16,21-28]. In the current 

case, n-type SB ( -SBnΦ ) is the barrier electrons need to overcome in order to transport from metal 

to semiconductor. In analogy to the Schottky-Mott model [29,30], we can define an innate n-type 

SB 0 0 0
-SB M Sn ϕ χΦ = − , where 0

Mϕ  is the innate work function of metal and 0
Sχ  is the innate electron 

affinity of semiconductor (Fig. 4a), such that -SBnΦ  is decomposed into 0
-SBnΦ  and Δ  (i.e., 

0
-SB -SBn nΦ = Φ + Δ  in Fig. 4b).  

     When 0Δ ≈ , for example in van der Waals (vdW) systems [31-33], one can expect that the 

SBs can be reasonably well described by innate properties. Fig. 4c shows the SBs for several 

stacked transition metal dichalcogenide heterostructures. It is found that these innate barriers 

agree reasonably well with the SBs from full heterostructure calculations and a systematic 

improvement over the Schottky-Mott (SM) limit is obtained. This improvement is also evident 

from a direct comparison to recent experiments [34-36]. The innate n-type SB of the 2H-

MoTe2/1T’-MoTe2 junction is calculated to be 0.01 eV, qualitatively different from the SB in the 

SM limit of 0.37 eV, but in good agreement with the experiment reporting an n-type Ohmic 

contact [34]. Additionally, the innate p-type SB of the stacked 2H-NbSe2/2H-WSe2 is calculated 

to be 0.03 eV, qualitatively different from the SB in the SM limit of 0.40 eV, but in good 

agreement with the experimental value of 0.05 eV [35,36]. 
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     In summary, we have presented a rigorous definition of the innate band alignment between 

solids, which allows for calculation of the surface dipole and built-in potential. It enables a clear 

distinction between innate and non-innate properties at interfaces, and we have used it to define 

the innate work function ( 0ϕ ), band offset, and Schottky barrier ( 0
SBΦ ) – which can be calculated 

without explicit consideration of the interface. First-principles calculations show that in the case 

of weak interfacial interaction, such as vdW interfaces, the SB is well described by 0
SBΦ , which 

yields systematic improvement over the Schottky-Mott limit. Beyond the interfacial physics, the 

insight into the common energy reference of bulk solids provides clues for understanding the 

long-standing problem of defining an average electrostatic potential of infinitely large systems, 

enabling the determination of a number of bulk properties: e.g., deformation potentials [37,38], 

universal electronic behaviors of materials [27,28,39], and formation energies of charged defects 

[40,41]. 
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Fig. 1. Schematic diagram for the interface generation and the built-in potential. (a-b) Illustration 
for the vacuum insertion within the bulk materials A and B. The ideal vacuum levels ( iv

AV  and 
iv

BV ) and maximum values ( 0
AV  and 0

BV ) of the planar averaged electrostatic potentials are 
denoted as red dashed lines. (c) The ideal A/B interface obtained by attaching the two ideal 
surfaces. The maximum values are naturally aligned to the same energy before the charge 
relaxation. (d) The A/B interface after charge relaxation. Here, the built-in potential A|Bψ  is well-
defined even though the boundary between two dissimilar materials is ambiguous.  
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Fig. 2. Electrostatic potential profiles for different choices of surface boundaries. Periodic 
boundary conditions are considered. Two different boundaries in bulk solid for maxz z=  and 

maxz z≠  are respectively shown in (a) and (c). The ideal vacuum and non-ideal vacuum 
insertions are respectively illustrated in (b) and (d).  
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Fig. 3. Complex surface terminations. (a),(b) Electrostatic potential profiles of ideal surfaces for 
a material consisting four atoms in the unit cell. The four atoms are denoted as blue, yellow, 
green, and red filled circles, respectively. The ideal surfaces for blue-atom- (○) and red-atom- (○) 
terminated cases are shown in (a) and (b), respectively. (c) An example of a (210) surface that 
contains (100) and (110) facets. 
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Fig. 4. Schematic band diagram for metal/semiconductor heterojunctions.  (a) Depicts the innate 
alignment of the ideal M/S interface for the case of an n-doped semiconductor without any 
electronic or ionic relaxation. The common energy reference, 0V , is denoted by the red solid 
lines. The Fermi levels and the band edges are denoted as solid black and blue lines, 
respectively. As there is no relaxation, the Fermi levels are not aligned. (b) The M/S interfaces 
after allowing for full ionic and electronic relaxations. (c) Comparison between Schottky-Mott 
model ( S-M

-SBnΦ ) and our model ( 0
-SBnΦ ) for 1T-MS2/2H-MoS2 stacked heterostructures with M  = 

(Ti, V, Nb, Mo, Ta, W). We consider 8 layers of 1T-TMDs stacked with 8 layers of 2H-MoS2 in 
the supercell calculations. We fix the in-plane lattice constant to the experimental value of 2H-
MoS2 (a = 3.16 Å) and obtained the optimized bulk structure of 1T-TMDs by relaxing the out-of-
plane lattice constant. We considered PBE+D3 method for van der Waals interaction.  
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Table 1. Calculated built-in potentials at the interfaces between two metals, based on 0 0
B AV V− , 

0 0
B Aϕ ϕ− , and B Aϕ ϕ− . Our DFT calculations were performed using Perdew-Burke-Ernzerhof 

(PBE) exchange-correlation functional [18] and the projector augmented wave (PAW) 
pseudopotentials [19], as implemented in the VASP code [20]. Ionic relaxations are not 
considered for simplicity. 

Interfaces 0 0
B AV V−  0 0

B Aϕ ϕ−  B Aϕ ϕ−  

Al/Ag 
(111) 0.988 1.003 0.364 
(110) -0.030 -0.039 -0.088 
(100) 0.924 0.914 -0.019 

Al/Au 
(111) 0.569 0.575 1.096 
(110) -1.949 -1.955 0.899 
(100) 0.121 0.136 0.821 

Ag/Au 
(111) -0.393 -0.391 0.731 
(110) -1.843 -1.843 0.817 
(100) -0.743 -0.720 0.847 

Ni/Cu 
(111) -0.627 -0.631 -0.334 
(110) -0.490 -0.505 -0.214 
(100) -0.576 -0.574 -0.408 

 
 


