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Abstract 

Acoustic waves in a linear time-invariant medium are generally reciprocal, however, 

reciprocity can break down in a time-variant system. In this paper, we report on an 

experimental demonstration of non-reciprocity in a dynamic one-dimensional phononic 

crystal, where the local elastic properties are dependent on time. The system consists of 

an array of repelling magnets, and the on-site elastic potentials of the constitutive 

elements are modulated by an array of electromagnets. The modulation in time breaks 

time-reversal symmetry and opens a directional bandgap in the dispersion relation. A 

theoretical explanation of the observed non-reciprocal behavior is provided as 

well.  This work provides a prototype for developing acoustic diode that can serve in 

acoustic circuits for rectification applications . 
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Phononic crystals and metamaterials control acoustic waves through the geometry of 

their building blocks, engineered with periodic impedance mismatches and/or local 

resonances [1-7]. The majority of current realizations focus on designing metamaterials 

in their spatial dimensions, while the material properties remain unchanged over time. 

This design framework restricts the application of metamaterials in scenarios where 

material’s tunability and adaptivity is required [8,9]. More importantly, in these time-

invariant metamaterials, reciprocity holds as a fundamental principle in wave 

propagation, requiring the transmission of information or energy between any two 

points in space to be symmetric for opposite propagating directions [10].  

However, non-reciprocal materials or devices, i.e., diodes, are usually required for 

rectification and control of the associated energy flow. Unlike electric diodes, 

mechanical or acoustic diodes are just starting to be explored [11-18]. Achieveing non-

reciprocity in mechanical systems through intrinsic time-reversal symmetry breaking has 

been demonstrated in strongly nonlinear networks [11,13,14], selective acoustic 

circulators [15], and topological mechanical insulators [16-18]. In nonlinear systems, the 

non-reciprocal behavior is a function of the nonlinear potential and may be tuned by the 

wave amplitude [19,20]. Recently, theoretical proposals [21-24] suggested the use of 

external, spatio-temporal modulation of material’s properties as a mean to achieve non-

reciprocity within the linear operating regime.  

Here we demonstrate realization of a dynamic phononic lattice in which the elastic 

properties can vary over time with spatiotemporal modulation. This time dependence 

leads to novel wave propagation behaviors such as non-reciprocity [21-24], which is very 

difficult to achieve in time-invariant systems. Though we focus on elastic waves in a 

magnetically coupled lattice, the concept extends to other types of waves such as 

thermal diodes [25] and photonic systems [26]. For instance, non-reciprocal propagation 

in photonic systems was observed in coupled, modulated waveguides [27] where 

modulation leads to irreversible mode conversion between the two waveguides. As for 

our system, it behaves as a mechanical diode operating at tunable frequency ranges. 
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Such device may serve in acoustic circuits, like circulators, transducers and imaging 

systems to rectify mechanical or acoustic energy flows [11].  

Experimental realizations of modulation-induced non-reciprocity in a single phononic 

waveguide require (i) a dynamic lattice with controllable elastic properties, and (ii) a 

dynamic modulation with speed comparable to the wave propagation velocity. We meet 

these requirements by building a mass-spring chain of repelling magnets modulated by 

externally driven coils. The chain consists of 12 ring magnets (݉ ൌ 9.8 g) free to slide on 

a supporting smooth cylindrical rail as shown in Fig. 1a. The first and last magnets are 

fixed to the rail (fixed boundary conditions). To dynamically modulate the chain, we 

introduce electrical coils around the 8 central ring magnets (masses 3 to 10). The 

electrical coils are positioned coaxially with the magnets and rest at the same center 

positions ݔ, as shown in Fig. 1a. When a current flows through the electrical coils, they 

create local magnetic fields that couple to the ring magnets. When the ring magnets are 

at rest (ݔ, position), they sit at the apex of the magnetic potential created by the coils 

and their coupling forces vanish. When the ring magnets displace, they experience 

either restoring or repelling forces from the coils, depending on the current direction. 

The coupling between each pair of ring magnet and coil is similar to a grounding spring. 

When the grounding spring stiffness is modulated spatiotemporally, time-reversal 

symmetry is broken leading to the formation of a non-reciprocal bandgap in the 

dispersion diagram [21-24] as shown in Fig. 1b. 
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Figure 1 Experimental setup for the non-reciprocal dynamic phononic lattice. (a) Top: 

Schematic of the experimental setup. Middle: Discrete mechanical representation of the 

system with masses and springs. Bottom: Schematic illustration of the modulation 

concept by changing the gounding spring stiffness (݇) in a wave-like fashion. (b) 

Scattering analysis: The red solid curve describes the original dispersion relation of the 

un-modulated monatomic lattice. The black dashed and grey dash-dotted curves 

correspond to Floquet-Bloch replicas of the original curves obtained by translation along 

the solid blue arrows േሺ߱ௗ, ௗሻݍ ൌ േሺ15Hz, 2ሻ/ߨ . Parity-breaking crossings 

(circled) are where Bragg’s condition is satisfied and non-reciprocal wave scattering is 

anticipated. (c) Force-displacement curve for neighboring magnetic masses, 

measurement (solid) and fitted curve (dashed). (d) Measured force-dispacement curve 

between the ring magnet and its surrounding coil at different currents. The red shaded 
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regions in both (c) and (d) corresponds to the dynamic operating regime of our 

experiments. 

To characterize the mechanical parameters of our system, we measure the repelling 

force between neighboring masses as a function of their displacement (see 

Supplemental Material). The resulting force-displacement curve exhibits a nonlinear 

force that is characteristic of dipole repulsion shown in Fig. 1c. We also measure the 

force between the magnets and the surrounding coils at different applied currents in Fig. 

1d. To measure the dynamic response of the system, we drive the 2nd mass with a 

sinusoidal force of frequency ௗ݂, and the velocity of mass 11 is monitored with a laser 

vibrometer (output signal). The velocity response is measured using a lock-in amplifier 

as a function of different ௗ݂ for different modulation parameters. Due to the small 

vibration amplitude of the driving signal ( 5 mm), the coupling between masses can be 

approximated by a linear response in the red shaded area of Fig. 1c. The linearized 

coupling stiffness between adjacent magnets obtained from experiments is ݇ ൎ 113 

N/m. Similarly the coupling between the electromagnets and the masses can be 

linearized in the dynamic regime of interest in Fig. 1d. We consider only nearest 

neighbor interactions between masses and mass-coil pairs, since non-nearest neighbour 

interactions decay to a negligible amount (see Supplemental Material).  

The spatiotemporal modulation of the system can be achieved by applying sinusoidal AC 

currents through the coils. Each coil is subjected to a current of the same frequency, 

݂ௗ , but with a phase shift of 2/ߨ or െ2/ߨ between neighbours. The equivalent 

grounding stiffness for the ݊-th mass thus can be modelled as: 

݇, ൌ ݇,  ݇, cos ቀ2ߨ ݂ௗݐ ט గ௫బ,ଶ ቁ ൌ ݇,  ݇, cosሺ2ߨ ݂ௗݐ ט  ௗ݊ሻ (1)ݍ

where ݇,  is the small time-independent grounding stiffness added by the on-site 

electromagnetic force, ݇,  is the modulation amplitude of the grounding stiffness, ݔ, 

is the equilibrium position of each unit, and ݍௗ ൌ േ2/ߨ is the normalized wave 

number. Equation (1) describes a traveling wave with wavelength ߣௗ ൌ 4ܽ  and 
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speed ݒௗ ൌ 4ܽ ݂ௗ . The modulation amplitude measured in our experiments is ݇, ൌ 24 N/m, which is 21% of the coupling stiffness, ݇. The constant part of the 

grounding stiffness is ݇, ൌ 2.4 N/m, which is one order of magnitude smaller than 

the oscillatory component.  

In the absence of modulation (݇, ൌ 0), the dispersion relation for an incident small-

amplitude plane wave ݑሺ݊, ሻݐ  ൌ  ܷexpሺ݅ሺ݊ݍ െ ,ሺ߱ܦ ሻሻ is described byݐ߱ ሻݍ ൌ ݇, െ ݉߱ଶ    4݇sinଶ  ቀଶቁ ൌ 0 . Modulating the lattice harmonically with ሺ ݂ௗ, ,௦ሺ݊ݑ ௗሻ generates an additional scattered fieldݍ ሻݐ ൌ  ௦ܷ exp൫݅ሺݍ௦݊ െ ߱௦ݐሻ൯ 

whose mode is shifted by an amount ሺ߱ௗ, ,ௗሻ due to spatiotemporal periodicity: ሺ߱௦ݍ ௦ሻݍ ൌ  ሺ߱, ሻݍ േ ሺ߱ௗ, .ௗሻݍ  The scattered field is negligible however ሺ ௦ܷ ا ܷሻ except when it is resonant with the incident field; i.e., when the modified 

Bragg’s condition  ܦሺ߱௦, ௦ሻݍ ൌ ,ሺ߱ܦ ሻݍ ൌ 0 is met [22]. Graphically, scattered modes 

are located at crossings between the original (ܦሺ߱, ሻݍ ൌ 0) and shifted (ܦሺ߱௦, ௦ሻݍ ൌ 0) 

dispersion curves. Note that the crossings are non-symmetrically distributed in a way 

that breaks parity of the dispersion diagram and, ultimately, reciprocity of wave 

propagation. Depending on whether ݍݍ௦ is positive or negative, the scattered mode 

propagates either with or against the incident wave, i.e., is either transmitted or 

reflected. In both cases however, its frequency is shifted away from the incident 

frequency ߱. This translates into a one-way dip in the transmission spectrum around ߱.  
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Figure 2 Non-reciprocal wave propagation for ࢊࢌ ൌ  Hz. (a) Dispersion diagram of 

the modulated lattice calculated by Fourier analysis of simulated velocity fields (color 

map) and analytically by coupled mode theory (solid black line). (b) Measured velocity 

response function. The amplitude ratio at 19.6 Hz is ݎ ൌ 2.9. (c) Measured velocity time 

series at ௗ݂ ൌ 19.6 Hz. The time series for ݍௗ ൌ െ2/ߨ is shown along the negative 

time axis for better illustration. (d) and (e) are the simulation results corresponding to (b) 

and (c), respectively. The simulated amplitude ratio at 19.6 Hz is ݎ ൌ 1.9 in panel (d). 

 

We first set the modulation frequency to ݂ௗ ൌ 15 Hz, which falls within the pass band 

of the monoatomic lattice. For this modulation frequency, three crossings exist at 5 Hz, 

19 Hz and 33 Hz and non-reciprocal wave characteristics are anticipated for neighboring 

driving frequencies ௗ݂ as shown in Fig. 2a. We measure the velocity of the last mass in 

the array as a function of the driving frequency, ௗ݂ in Fig. 2b. The velocity profiles differ 

when the acoustic waves are traveling in the same (red) or opposite (blue) direction to 

the modulation wave, at driving frequencies close to ௗ݂ ൌ 19.6 Hz. We define the co-

directional/contradirectional bias ratio as ݎ ൌ ܷି/ܷା where ܷט denotes the velocity 

response amplitude for ݍௗ ൌ 2/ߨט . At ௗ݂ ൌ 19.6  Hz, the measured velocity 

response profile in time shows that waves traveling in opposite directions have different 

amplitudes and profiles, with a bias of ݎ ൎ 2.9, shown in Figs. 2b, c. The time-domain 



 8

amplitudes are lower than the amplitudes obtained from the velocity response 

functions. This is due to the anharmonic nature of the response in the modulated lattice. 

However, results demonstrate that the signal transfer around ௗ݂ ൌ 19.6 Hz is strongly 

enhanced when traveling along the modulation direction and suppressed in the other 

direction, thus exhibiting a non-reciprocal behavior. 

We developed a mathematical model to capture the dynamic characteristics of the 

modulated lattice. The system can be described as:  ݉ݑሷ   ௦௦ܨ  ݇,ݑ  ௨ܨ ൌ ߨcosሺ2ܣଶ,ߜ ௗ݂ݐሻ              (2) 

for 1  ݊  12 . Here, ݑሺݐሻ ൌ 0  at the two boundaries ݊ ൌ 1,12 ௦௦ ൌܨ . ሶݑܾ ߤ signሺݑሻ  represents dissipative forces within the chain, with viscous damping 

coefficient ܾ ൌ 0.056  kg/s and Coulomb friction coefficient ߤ ൌ 0.012  N (see 

Supplemental Material).  The coupling force term is  ܨ௨ ൌ ܲሺܽ െ ݑ  ାଵሻݑ െܲሺܽ െ ିଵݑ  ሻݑ , where we use the approximation  ܲሺݔሻ ൌ ܿଵ/ሺݔ െ ܿଶሻଶ  with ܿଵ ൌ 0.9788 mNm2 and ܿଶ ൌ 7.748 mm obtained from a fitting based on Fig. 1c.  ߜଶ, is 

the Kronecker delta which is 1 for ݊ ൌ 2 and zero everywhere else. The forcing 

amplitude ܣ ൌ 0.21 N is obtained as a fitting parameter. At this value of the forcing 

amplitude, the response of the system is well approximated by the linearized equations 

of motion (the contribution from nonlinearity is discussed in the Supplemental Material). 

The experimental and numerical velocity response functions for a non-modulated lattice 

agree well [28] (see Supplemental Material). When the modulation is turned on, the 

velocity profiles obtained in experiments and simulations show a similar nonreciprocal 

response in Figs. 2d, e. However, the non-reciprocal behavior at ௗ݂ ൌ 19.6 Hz is less 

pronounced in simulations than in measurements (ݎ ൎ 1.9).  

We computed dispersion curves from space-time Fourier analysis of the velocity field 

and compared them with the ones obtained with the plane-wave expansion method in 

Fig. 2a. The observed non-reciprocal wave characteristics, at ௗ݂ ൌ 19.6 Hz, agree well 

with the dispersion characteristics. The dispersion curves in Figs. 1b & 2a predict non-

reciprocal behavior also near 5 Hz and 33 Hz. However, the experimental velocities are 
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too small at these frequencies to capture the effect. Note that the analyses (numerical and 

theoretical) on an infinite lossless lattice (Fig 2a) predicted the same frequency range for non-

reciprocal wave propagation as the experiments (Fig 2b) and simulations (Fig 2d) on a finite 

lossy lattice. The effects of energy loss and finite number of units are therefore secondary to 

modulation effects; see Supplemental Material for discussions of finite-size and loss effects.  

 

 

Figure 3. Non-reciprocal wave propagation for ࢊࢌ ൌ  Hz. (a) Dispersion diagram of 

the modulated lattice calculated by Fourier analysis of simulated velocity fields (color 

map) and analytically by coupled mode theory (solid black line). (b) Measured velocity 

response function. The amplitude ratios are ݎ ൌ 1.8 at 9.8 Hz and ݎ ൌ 0.4 at 31.6 Hz. (c) 

Measured velocity time series at ௗ݂ ൌ 31.6 Hz. The time series for ݍௗ ൌ െ2/ ߨ is 

shown along the negative time axis for better illustration. (d) and (e) are the simulation 

results corresponding to (b) and (c), respectively. The simulated bias ratios are ݎ ൌ 1.6 

at 9.8 Hz and ݎ ൌ 0.7 at 31.6 Hz in panel (c).  

 

In order to demonstrate the tunability of the non-reciprocal frequency range in our 

system, we next set the modulation frequency to ݂ௗ ൌ 40 Hz, within the band gap of 

the underlying monatomic lattice. Our model predicts non-reciprocal wave behavior for 

driving frequencies near the crossings at 10 Hz and 30 Hz as shown in Fig. 3a. This is also 
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captured in the measured velocity responses in Fig. 3b and time domain profiles at 

ௗ݂ ൌ 31.6 Hz in Fig. 3c. Corresponding numerical simulations in Figs. 3d,e agree very 

well with the measurements.  

The dispersion curve of the modulated lattice in Fig. 3a obtained from numerical 

calculation corroborates the observed non-reciprocal characteristics for ݂ௗ ൌ 40 Hz. 

It reveals two crossings located near 30 Hz and 10 Hz and visible as small bright yellow 

regions lying on a main dispersion branch. At these points, the modulation-induced 

scattered field is strong enough to change the overall wave field. This manifests in the 

velocity response functions as ݎ  1 near 10 Hz and ݎ ൏ 1 near 30 Hz. For other points 

along the main dispersion branch, the scattered wave is too weak compared to the 

incident field to induce any noticeable non-reciprocal effects. In contrast to the case for 

݂ௗ ൌ 15 Hz, the crossing here occurs between a positive and a negative branch of the 

dispersion curve (߱߱௦ ൏ 0) and leads to the opening of a couple of “vertical” bandgaps 

as shown in Fig. 3a. Such crossings in infinite loss-less systems are characteristic of 

unstable interactions caused by supersonic modulation velocities, where the velocity 

field is continuously amplified by drawing energy from the modulation [31,32]. However, 

our experimental system is intrinsically lossy and finite, and remains stable in the 

studied regime. The presence of losses is known to quench instabilities [33]. In our 

system, this translates in the presence of a sharp peak around 30 Hz in the transmission 

spectrum, shown in Figs. 3b,d.  

In conclusion, our results provide an experimental demonstration of modulation-

induced non-reciprocity in a linear phononic lattice. The operating range of our lattice is 

beyond the asymptotic limits that are typically enforced in the existing theoretical work. 

The experimental realization of dynamically modulated nonreciprocal systems opens 

new opportunities for sound and vibration insulation [11,12,15], phononic logic [13,14] 

and energy localization and trapping [34]. In the future, the phononic waveguide 

developed in our work could be employed to study the nonlinear dynamics of 

modulated lattices, a regime that has not been explored before. The design could also 
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be miniaturized into micro- or nano-scale electromechanical systems [35-37] with 

tunable frequencies as basic elements for acoustic rectifying circuits.  
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