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We solve a model that has basic features that are desired for quantum annealing computations:
entanglement in the ground state, controllable annealing speed, ground state energy separated by
a gap during the whole evolution, and programmable computational problem that is encoded by
parameters of the Ising part of the spin Hamiltonian. Our solution enables exact nonperturbative
characterization of final nonadiabatic excitations, including scaling of their number with the anneal-
ing rate and the system size. We prove that quantum correlations can accelerate computations and,
at the end of the annealing protocol, lead to the perfect Gibbs distribution of all microstates.

Many optimization problems can be reformulated in
terms of searching for a configuration that minimizes a
Hamiltonian HA(s1, . . . , sN ) of N Ising spins sj [1–3].
This task is often so complex that it cannot be solved
with modern computers. The idea of quantum annealing
(QA) is to treat the Ising spins as z-components of quan-
tum spins-1/2, ŝj , and realize quantum evolution with a
Hamiltonian

Ĥ(t) = ĤA(ŝz1, . . . , ŝ
z
N ) + g(t)ĤB(ŝ1, . . . , ŝN ), (1)

where ĤB has a ground state that overlaps with all possi-
ble QA outcomes and does not discriminate against some
of them at the start. Parameter g(t) is large at t = 0 but
decays to zero at t → ∞. According to the adiabatic
theorem, a system that is initially in the ground state
remains in the instantaneous ground state if the lowest
energy is always nondegenerate and parameters change
sufficiently slowly. So, as we illustrate in Fig. 1(a), slow
decay of g(t) converts the ground state of ĤB into the
ground state of ĤA, which is then read by measuring
spins along the z-axis.

In practice, the annealing time is restricted, so nonadi-
abatic excitations become inevitable [4–7]. Nevertheless,
at N � 1, there are optimization problems with some
error tolerance. In this letter, we solve a minimal model
of QA and show that:

(i) tolerance of a computational goal to a small num-
ber of errors allows QA protocols that introduce extra
quantum correlations in order to reduce the required
computation time by a factor ∼ 1/N in comparison to
the conventionally justified QA time.

(ii) the distribution of nonadiabatic excitations in a
closed quantum system after QA can be completely ther-
malized;

FIG. 1. (a) During QA, the entangled ground state is trans-
formed adiabatically into the ground state of the Ising spin
Hamiltonian. (b) Evolution of the spectra of the QA
Hamiltonian (3) in nonadiabatic (g = 1/N , top) and nearly-
adiabatic (g = 1, bottom) regimes. The ground level is
marked by red color. Here, N = 12, Sz

tot = 0, εj = j/N + ξj ,
and ξj are uniformly distributed random real numbers from
the range (−1/(2N), 1/(2N)). The inset shows exact level
crossings indicating model’s integrability.

(iii) this thermalization is encoded in integrability, i.e.,
the possibility to describe the behavior analytically.

The first property justifies the error-tolerant QA com-
putation technology, the second one proves that averag-
ing over unknown conditions is not needed to find ther-
malization in coherent evolution, and the third one coun-
ters the common belief, taking roots in the numerical
experiment by Fermi-Pasta-Ulam-Tsingou [8], that com-
plete thermalization is incompatible with integrability.

Initial quantum correlations are not required for QA
but our goal here is to learn if they can be a resource
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for accelerated computations. The simplest Hamiltonian
of N spins with entanglement in the ground state is all-
to-all coupling [9–11], ĤB = −

∑N
i 6=j ŝ

+
i ŝ
−
j , restricted to

a sector with a conserved total spin. The ground state
of ĤB is the sum of all eigenstates of ĤA with the same
Sztot =

∑N
j=1 s

z
j :

|ψ0〉 ∼ | ↑↑ . . . ↓↓〉+ | ↑↓ . . . ↑↓〉+ . . .+ | ↓↓ . . . ↑↑〉.(2)

The simplest to write QA protocol is the inverse time
decay, g(t) = g/t, where t ∈ (0+,∞), g is a con-
stant; and the simplest Ising Hamiltonian is ĤA =∑N
j=1 εj ŝ

z
j , where the vector of constant parameters,

ε = (ε1, . . . , εN ), is programmable for computations. So,
the minimal QA Hamiltonian for our goals is

ĤBCS(t)=
∑
j

εj ŝ
z
j−

g

t

∑
j 6=k

ŝ+
j ŝ
−
k , j, k = 1, . . . , N. (3)

Let Sztot = 0 and all constants εj be nondegenerate. The
ground state of HA has then N/2 spins down and N/2
spins up; all down-spins have larger εj than all up-spins.

Hence, QA with ĤBCS solves an array sorting problem:
to find N/2 indices j that mark the largest εj .

The time-independent version of ĤBCS is equivalent to
the Bardeen-Cooper-Schrieffer model of superconductiv-
ity [12]. Its nonequilibrium dynamics has attracted con-
siderable interest both experimentally [13, 14] and the-
oretically [15, 16]. Recently, the time-dependent model
(3) was proved to be integrable [17], but its solution for
arbitrary t in terms of repeated contour integrals [18] is
too complex to reveal physical properties of QA. There-
fore, here we will develop a different approach that will
target the desired characteristics directly.

Deviation from adiabaticity is controlled continuously
in ĤBCS(t), as shown in Fig. 1(b): the ground level is
always separated by a gap from the rest of the spectrum
but approaches other levels slower when g is larger. Pre-
cision of QA is usually characterized by the probability
PG to remain in the ground state at t→∞. According to
the Landau-Zener formula, PG is determined by the size
of the energy distance ∆ to the nearest energy level and
the characteristic rate β with which this gap changes:
PLZ = 1 − e−2π∆2/β . At t → ∞, the ground level of
ĤBCS is separated from the lowest energy excitation by
∆ = |εi−εj |, where i and j are indexes of spins for which
this energy difference is minimal. Coupling between these
spins becomes comparable to ∆ at the effective anneal-
ing time τ ∼ g/∆, and the characteristic rate with which
this coupling changes is β = |d(g/t)/dt|t=τ = ∆2/g.
This leads to the rough estimate in the adiabatic limit:
PG ∼ 1−e−2πg, which we confirm in Fig. 2(a) by compar-
ing to numerical results. Hence, values g > 1 correspond
to adiabatic QA.

To understand the regime at g < 1, we assume in what
follows that 0 < ε1 < ε2 < . . . < εN , and introduce a new

FIG. 2. (a) The probabilities to remain in the ground state at
different g and N . Solid curves and the limit N →∞ (black
dashed curve) are predictions of Eq. (12) and point markers
are the numerical results [19]. (b) Time-dependence of com-
putation accuracy. Solid curves are results of the numerical
solution for the Hamiltonian ĤBCS(t) with N = 12, Sz

tot = 0,
and the same εj as in Fig. 1(b).

accuracy characteristic:

η ≡ (4/N)

N/2∑
k=1

szk, (4)

where szk is the outcome of the k-th spin polarization

measurement. The ground state of ĤA at Sztot = 0 has
η = 1. Excitations reduce η, e.g., η = 0 means complete
loss of valuable information.

In Fig. 2(b) we show time-dependence of the mean
value 〈η〉 at different g, obtained by solving the
Schrödinger equation with ĤBCS for N = 12 numeri-
cally. Saturation of 〈η〉 means that one can interrupt
evolution at finite t without loosing accuracy. Final 〈η〉
is growing with g and at g = 1/N it reaches values
〈η〉 > 0.6, at which over 80% of spins point correctly
along their ground state directions. At g < 1/N , the
time to saturation is mostly defined by the energy pa-
rameters εj and almost does not change with g. For
g > 1/N , this time is growing and becomes about a fac-
tor N longer at g = 1 than at g = 1/N , in agreement
with our rough estimate τ ∼ g/∆. Figure 2(b) also sug-
gests that 〈η〉 = 1 − O(1/N) is reached at values of g
outside the adiabatic regime. However, numerical simu-
lations are not decisive here because they are restricted
to small N . So, we will develop an analytical approach
that will confirm this expectation.

To understand behavior at arbitrary N , we recall that
ĤBCS commutes with N Gaudin Hamiltonians [20]:

Ĥj = tŝzj − 2g
∑
k 6=j

ŝj · ŝk
εj − εk

, k, j = 1, . . . , N,

which also satisfy conditions: ∂εj ĤBCS = ∂tĤj and

∂εj Ĥi = ∂εiĤj for all i, j. According to [17], this prop-
erty is what makes the model (3) analytically solvable.
Following [17], we introduce multi-time vector t, where
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FIG. 3. Two paths corresponding to the same evolution
operator. Evolution takes place over the space of real time
t and complex values of ε− ≡ εj − εj+1. The initial point a
corresponds to t = 0+ and εj < εj+1. The final point d is at
t → ∞ and ε̄j = εj+1, ε̄j+1 = εj . The red path a → b → d
avoids the singularity at ε− = 0 from the infinitesimally small
distance r at t = 0+, and the blue path a→ c→ d avoids this
singularity at t → ∞ along the arc (cd) with a finite radius.
Evolution over links (ab), (bd), (ac), and (cd) is described by
matrices, respectively, V , Sε̄, Sε, and V ′.

t0 ≡ t, tj ≡ εj and write an operator of evolution in this
multi-time space

Û = T̂ exp

[
−i
∫
P

N∑
µ=0

Ĥµ dt
µ

]
, Ĥ0 ≡ ĤBCS.

Û does not depend on the path P, except its initial and
final points. This invariance follows from the fact that
the gauge field with components Aµ = −iĤµ has zero
curvature. Hence, its integral over any closed path that
does not enclose singularities of Ĥµ is zero [17].

Let us compare two evolution paths shown in Fig. 3
that start at vector ε at t = 0+ (point a) and end at
t → ∞ at vector ε̄ (point d) such that two adjacent in
magnitude vector components are related by ε̄j = εj+1

and ε̄j+1 = εj for one and only one j, while in all other
respects ε and ε̄ are identical. These paths have to avoid
the singularity of Ĥj − Ĥj+1 at εj = εj+1, so the differ-
ence ε− ≡ εj − εj+1 is allowed to be complex valued.

At the path a → b → c, evolution matrix V along the
link (ab) reverses the sign of ε− keeping other parameters
constant. Next, at (bc), we keep ε̄ constant and evolve
to the end point at t→∞ with the evolution matrix Sε̄.
At the other path a → c → d we initially evolve, with
the evolution matrix Sε, along the real time to a point at
large t and then reach the end point, with the evolution
matrix V ′, at constant t. The invariance of Û means that

Sε̄V |ψ0〉 = V ′Sε|ψ0〉. (5)

We will use Eq. (5) to compare amplitudes of evolution
along real t from |ψ0〉 to states |j〉 = | . . . , ↑j , ↓j+1, . . .〉
and |j̃〉 = | . . . , ↓j , ↑j+1, . . .〉 that are different only by
directions of two spins with neighboring εj and εj+1.

Consider first the link (ab) in Fig. 3. Suppose that
initially εj < εj+1. We keep εj + εj+1 constant, so∫

Hj dεj +

∫
Hj+1 dεj+1 = (1/2)

∫
(Ĥj − Ĥj+1) dε−.

The evolution operator for this link is

V = T̂ exp

[
−(i/2)

∫
P(ab)

(Ĥj − Ĥj+1) dε−

]
. (6)

All Ĥµ commute, so |ψ0〉 is the eigenstate of not

only ĤBCS but also of Ĥj − Ĥj+1. Hence, 〈α|(Ĥj −
Ĥj+1)|ψ0〉 = 0 for |α〉 ⊥ |ψ0〉. We calculate |〈ψ0|V |ψ0〉|
bypassing the singularity at εj = εj+1 along the semi-
circle of radius r in the complex ε− plane. Only the
piece of this path with nonzero Im(ε−) contributes to
the absolute value. In the limit r → 0 at t = 0, we have
Ĥj − Ĥj+1 → −4gŝj · ŝj+1/ε−. For ε− = reiφ, we find

|〈ψ0|V |ψ0〉|=e(1/2)
∫ 0
π
dφ 〈ψ0|(Ĥj−Ĥj+1)|ψ0〉t=0 =eπg/2.(7)

Consider now the link (cd), at which t → ∞. If
n 6= j, j+1 we have Ĥn = tszn+O(1). Hence, such Hamil-
tonians are proportional to spin operators, and commu-
tation of Ĥn with Ĥj − Ĥj+1 means conservation of szn
during the evolution along this link, i.e., 〈j|V ′|α〉 = 0 if
|α〉 has different from |j〉 value of a spin with index n.
Transitions between states |j〉 and |j̃〉, however, should
be treated with extra care because Ĥj and Ĥj+1 are sin-
gular near εj = εj+1 where conservation of spins with
indexes j and j + 1 breaks down. So, we set evolution
between points c and d along a semicircle with a finite
radius in Fig. 3, restricting this evolution to the subspace
of states |j〉 and |j̃〉.

Let us again change variables so that ε− = bs/t, where
b/t → 0 and b > 0 is finite. The large parameter t then
drops out of the evolution equation along (cd):

i
d|ψ〉
ds

=

(
b+ g/(2s) κ/s

κ/s −b+ g/(2s)

)
|ψ〉, (8)

where |ψ〉 = cj(t)|j〉+ cj̃(t)|j̃〉 with amplitudes cj and cj̃ ;

s changes along a semicircle s = Reiφ with R→∞, and
φ decreases from π to 0. Parameter κ is a constant that
depends on states of all spin directions in |j〉. In (8), we
dropped all terms that decrease faster than ∼ 1/R.

This evolution was already studied in Ref. [21], ac-
cording to which we can disregard the vanishingly small
off-diagonal terms κ/s in calculation of the diagonal ele-
ments of V ′:

|〈j|V ′|j〉| = e(1/2)
∫ 0
π
dφ 〈j|(Ĥj−Ĥj+1)|j〉 = e−πg/2. (9)

As for the off-diagonal elements of V ′, such an adiabatic
approximation can be justified only if the initial state
has the lower energy at s→ −∞. Only then cannot the
evolution along the complex time contour lead to growth
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FIG. 4. (a) The final polarization of several spins for N = 12
and Sz

tot = 0. Prediction of the Gibbs distribution (solid
curves) is compared to numerical solution of the Schrödinger
equation (point markers) [19]. Here, εj are the same as in
Fig. 1. (b) Accuracy of QA at different g and N at t → ∞.
Points show exact predictions of Eq. (12), and solid lines are
the large-N approximation (13).

of the inter-level transition amplitude [21]. For εj < εj+1

this means that

〈j|V ′|j̃〉 = 0, εj < εj+1, (10)

independently of κ but we generally have 〈j̃|V ′|j〉 6= 0.
The latter element does not appear in the following cal-
culations but we note that such a nonzero term would be
relevant if the singularities were enclosed by the paths
with Im(ε−) < 0 instead of those in Fig. 3.

Evolution along t at constant ε̄ is the same as at
ε but with exchanged spin indexes: j ↔ j + 1. So,
〈j|Sε̄|ψ0〉 = 〈j̃|Sε|ψ0〉. The probabilities to find the
microstates |j〉, |j̃〉 at fixed ε and t → ∞ are then,
P|j〉 = |〈j|Sε|ψ0〉|2 and P|j̃〉 = |〈j|Sε̄|ψ0〉|2. Multiplying

both sides of equation (5) by 〈j| from the left, and using
(7), (9), and (10), we find that transition probabilities
from |ψ0〉 to the two states are related:

P|j̃〉/P|j〉 = e−2πg, εj < εj+1. (11)

Equation (11) is valid for any index j and arbitrary values
of all parameters εk /∈ (εj , εj+1) and spin projections szk
in |j〉 for k 6= j, j + 1. It has the form of the detailed
balance condition that is possible to satisfy only if the
probability to find any final eigenstate of ĤA, |{sz}〉 ≡
|sz1, sz2, . . . , szN 〉, is given by the Gibbs distribution

P{sz} =
1

Z
e−2πg

∑N
j=1 js

z
j δ

 N∑
j=1

szj − Sztot

 , (12)

where 1/Z is a normalizing factor. In Fig. 4(a), we test
Eq. (12) numerically and illustrate that generally spins
aline along their ground state directions at g � 1, i.e.,
in strongly nonadiabatic regime. Independence of P{sz}
of εj , except the relative order of these parameters, is
the property shared by many solvable time-dependent
models for reasons discussed in [22]. A simpler proof of

this independence is via relation (5) applied to a situa-
tion with ε and ε̄ different only by continuous changes
that keep all vector components real and nondegenerate.
Pieces of evolution in Fig. 3 with t = const then do not
contribute to transition probabilities at all, and (5) leads
to relation |Sε| = |Sε̄|.

The Gibbs distribution may not describe the thermal-
ized state of the right Hamiltonian. However, for equidis-
tant spin splittings, εj = εj, the distribution (12) does

correspond to ĤBCS at t → ∞, i.e. we find a complete
thermalization in this case, as we announced in (ii), at
temperature

T = ε/(2πkBg),

where kB is the Boltzmann constant.
To derive coarse-grained characteristics at N � 1, it

is safe to replace the delta-function in (12) by a weaker
constraint that equates only the average spin to Sztot (see
supplementary material [19] for details of calculations,
which includes Refs. [23, 24]). This leads to

〈η〉 ≈ 2

πgN
(log(1 + eπgN )− log 2)− 1, (13)

which we confirm in Fig. 4(b), and from which we find
that to achieve accuracy 〈η〉 at conditions Sztot = 0, N �
1, g � 1/N , we should set g = 2 log 2/[πN(1−〈η〉)] that
is far from the adiabatic regime at N →∞, proving (i).

For example, if g = 0.01, i.e., calculations are 100 times
faster than the adiabatically protected ones, the proba-
bility of a wrong result per spin is (1−〈η〉)/2 ≈ 22./N , for
N � 1, and only 20-25 errors appear totally in the limit
N →∞. We note that experiments with the BCS Hamil-
tonian in ultracold atoms deal with N ∼ 106 fermions
[25], in which BCS coupling can be controlled by time-
dependent fields.

Our solution illustrates importance of quantum corre-
lations that are introduced by ĤB : collective effects help
some of the spins to settle much earlier in time (Fig. 4(a)).
The remaining spins in turn feel this, which helps them to
find their own ground state directions faster while satisfy-
ing the total spin conservation constraint. If, otherwise,
we had set ĤB =

∑N
i=1 ŝ

x
i , i.e., if we were looking for the

ground state of permanently uncoupled spins, we would
find the final 〈η〉 independent of N and decaying quickly
at g < 1, independently of the choice of εj .

This proves that strongly interacting QA dynamics can
be studied exactly beyond the models of noninteracting
fermions and their equivalents [26]. Unlike these mod-
els, simplicity of the final distribution (12) rather reflects
the facts that g(t) ∼ 1/t is scale-free and the model (3)
likely has no conservation laws, except Sztot = const. The
latter difference leads to essentially different behavior of
error probabilities in the nonadiabatic regime. Thus, the
QA models that are equivalent to sets of independent
two-level systems, such as the quantum Ising chain in a
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transverse magnetic field [26], inevitably predict the lin-
ear scaling of the number of computational errors with
growing N at other conditions fixed. In contrast, our
model shows a vanishing error probability per spin in the
limit of large N in the nonadiabatic regime at a fixed
driving protocol and spin coupling distribution. This ob-
servation suggests that QA protocols with a strongly en-
tangled initial state may provide considerable boost to
accuracy of QA computations. Further experimental and
numerical evidence in support of this conclusion is still
needed to understand advantages of this approach.

Quantum thermalization is usually associated with
semiclassical chaos that makes local operator expecta-
tions in typical eigenstates close to thermal ensemble
averages [27, 28]. We showed, however, that also reg-
ular fields can steer coherent reversible evolution toward
the perfect Gibbs distribution of all independent eigen-
states of a Hamiltonian. Emergence of the strong de-
tailed balance constraint, which enables this thermaliza-
tion, would be impossible without the symmetry respon-
sible for model’s integrability. So, integrability is not only
compatible but it is needed naturally to find the Gibbs
distribution after QA. In [19], we support this conclusion
by showing that the model’s symmetry reflects invariance
of the evolution matrix under action of the Braid Group
and the associated with it quantum group SUq(2) [29–31]
where the deformation parameter q ≡ e−ε/2kBT defines
the temperature scale.
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