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Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is
relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically
realistic coherent errors is relatively unknown. Here we prove that encoding a system in a stabilizer
code and measuring error syndromes decoheres errors, that is, converts coherent errors to proba-
bilistic Pauli errors, even when no recovery operations are applied. Two practical consequences are
that the error rate in a logical circuit is well-quantified by the average gate fidelity at the logical level
and that essentially optimal recovery operators can be determined by independently optimizing the
logical fidelity of the effective noise per syndrome.

INTRODUCTION

Quantum computers are likely to dramatically outper-
form classical computers, provided that errors can be cor-
rected enough to make the output reliable. Errors in a
quantum computer can take many forms with differing
impacts on a error-correction procedure. Most studies of
the performance of quantum error-correcting codes only
consider probabilistic Pauli errors because they are easy
to simulate via the Gottesman-Knill theorem [1]. How-
ever, in real systems, it is likely that other noise will also
be present.

Determining the performance of an error-correcting
code at the logical level under general noise is compli-
cated because such noise is harder to simulate. Previous
approaches have expanded the class of errors to some
larger class that can still be efficiently simulated [2], per-
formed full density-matrix simulations [3], used tensor
network descriptions of specific codes [4, 5] or effective
logical process matrices [6–8]. These methods are sub-
optimal because they either require a huge amount of re-
sources to simulate or are indirect approximations. They
also do not easily give structural insight because extrap-
olating the effective logical noise from the description of
the encoded state is difficult and determining the scaling
with parameters of interest typically requires extensive
recalculations.

Optimistically, one may hope that a (numerical or ana-
lytical) estimate of the infidelity of the logical noise under
a probabilistic Pauli channel generalizes directly to gen-
eral logical noise. However, even quantifying the error
becomes more complicated for more general noise. The
“error rate” due to a noise process N acting on a m-level
system is often experimentally quantified via the average

gate infidelity to the identity (hereafter the infidelity)

r(N ) = 1−
∫

dψ〈ψ|N (|ψ〉〈ψ|)|ψ〉 (1)

because it can be efficiently estimated via randomized
benchmarking [9–13]. However, theoreticians often re-
port rigorous bounds on the performance of a quantum
error-correcting code or a circuit in terms of the dia-
mond distance to the identity (hereafter the diamond
distance) [14]

ǫ(N ) = sup
ψ

1
2‖ [N ⊗ Im − Im2 ](ψ)‖1 (2)

where ‖A‖1 =
√
TrA†A and the maximization is over

all m2-dimensional pure states (to account for the error
introduced when acting on entangled states).
The infidelity and diamond distance are related via the

bounds [15, 16]

r(N )(1 +m−1) ≤ ǫ(N ) ≤
√

m(m+ 1)r(N ). (3)

which scale optimally with respect to r and m [17]. For
unitary noise, ǫ(N ) scales as

√

r(N ), though it does not
necessarily saturate the upper bound of eq. (3); this scal-
ing follows from the magnitude of the coherent (non-
Pauli) part of the noise [18]. Pauli noise saturates the
lower bound of eq. (3) and the effect of coherent noise
is often assumed to be negligible, so that experimental
infidelities are often compared to diamond distance tar-
gets to determine whether fault-tolerance is possible [17].
However, even if coherent errors make a negligible con-
tribution to the infidelity, they can dominate the dia-
mond norm [19]. Because of this uncertainty about how
to quantify errors effectively, it is unclear what figure of
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merit recovery operations should optimize and how to
quantify the logical error rate [3, 8, 20].
Previous studies have shown that the contribution to

the logical noise from the coherent part of the physi-
cal noise decays exponentially as a function of code dis-
tance [7], although the decay rate was only given as an
abstract property of the noise map. Recently, the decay
rate was analyzed for specific noise models in the repeti-
tion code [21].
In this paper, we directly relate the decay rate of co-

herent terms at the logical level of a general stabilizer
code to the infidelity of the physical noise of a general
local noise process, which can be estimated by random-
ized benchmarking. Further, we give physical motiva-
tion for the decoherence of errors with increasing code
distance by relating the scaling of errors to projective
syndrome measurements. We demonstrate that—even
without applying recovery operations—encoding a sys-
tem in a quantum error correcting code and measuring
error syndromes decoheres errors, that is, reduces them
to probabilistic Pauli errors. To isolate the contribution
from local noise, we assume that there is no other con-
tributing noise. That is, encoding, syndrome measure-
ments, recovery operations, and decoding are all assumed
to be noiseless.
Our results show that the effective logical noise is well-

characterized by the logical infidelity. This provides a
rigorous justification for choosing recovery maps to inde-
pendently optimize the logical fidelity per syndrome (in-
stead of, for example, optimizing the diamond norm of
the logical noise averaged over all syndromes). Comple-
mentary results on the scaling of the diamond distance
with quantum error correction protocols were indepen-
dently obtained in ref. [22].
The paper is structured as follows. We first introduce

Markovian noise processes and review the process ma-
trix formalism, a convenient representation of quantum
channels (not to be confused with the χ matrix represen-
tation). We then give an expression for the infidelity in
terms of this representation and discuss the implications
and bounds on the entries of a process matrix in terms
of its infidelity. Next, we introduce stabilizer codes and,
using the aforementioned bounds, discuss the behavior of
the effective logical noise of an encoded state after syn-
drome measurements with and without the application of
recovery operations in terms of the physical infidelity of
the qubits. We conclude by discussing some implications
of our work and discuss how our results relate to existing
results showing coherent errors at the logical level.

MARKOVIAN NOISE PROCESSES

We represent quantum states and measurements of a
m-dimensional system by vectors as follows. Let {ej :

j ∈ Zm} be the canonical basis of Cm
2

and B be an

arbitrary trace-orthonormal basis of Cm×m respectively,
that is, Tr(B†

jBk) = δj,k for all Bj, Bk ∈ B. We will
generally choose B to be the set of normalized (physical or
logical) Pauli operators, P = {I2, X, Y, Z}/

√
2, or tensor

products thereof. We define a map |.〉〉 : Cm×m → Cm
2

by setting |Bj〉〉 → ej for all Bj ∈ B and extending to a
linear map, so that

|M〉〉 =
∑

j

Tr(B†
jM)ej . (4)

Defining 〈〈M | = |M〉〉†, we have

〈〈M |N〉〉 = Tr(M †N). (5)

A Markovian noise process is a linear mapN that maps
valid quantum states of one system to valid quantum
states of another system, and so is completely positive
and trace-preserving (CPTP). Let Bin and Bout be trace-
orthonormal bases for the input and output systems re-
spectively. Then

|N (M)〉〉 =
∑

B∈Bin

|N (B)〉〉〈〈B|M〉〉

= N|M〉〉, (6)

where we abuse notation slightly by using N to de-
note both an abstract map and its matrix representation
∑

B∈Bin
|N (B)〉〉〈〈B|. Note that |N (B)〉〉 is a state of the

output system and so is expanded relative to Bout via
eq. (4). The composition of two channels is then given
by the standard matrix product of the process matrices.
The average infidelity of a single-qubit noise process N

with the identity in terms of process matrices is [23]

r =
Tr[I − N ]

6
. (7)

The infidelity only captures the effects of the Pauli part
of the noise, that is, the diagonal part, whereas the dis-
connect between the infidelity and the diamond norm
in eq. (3) for non-Pauli noise is due to the off-diagonal
terms, which we call the coherent part of the noise.
Setting B0 = I2/

√
2 and defining the single-qubit error

matrix E ≡ |I4 − N|, we have the following bounds on
the matrix entries Eσ,τ = 〈〈σ|E|τ〉〉 of E in terms of the
infidelity.

Lemma 1. For any single-qubit Markovian noise process

with infidelity r,

Eσ0,σ = 0 (8a)

Eσ,σ0
≤ 3r (8b)

Eσ,σ ≤ 3r (8c)

Eσ,τ ≤
√
6r (8d)

for all σ, τ ∈ ~σ = I,X, Y, Z/
√
2.
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Proof. Equation (8a) follows directly from the trace-
preserving condition. Equation (8b) was proven in [16,
Prop. 12]. To prove eq. (8c), note that the Pauli twirl of
N ,

1

4

∑

P∈{I,X,Y,Z}

PNP (9)

where P denotes the channel that acts via conjugation by
P , is a valid channel whose process matrix is the diagonal
part of N whose singular values are consequently the
diagonal entries. We can then write Eσ,σ = aσr [24]
where the aσ must satisfy

(aσ − aτ )
2 ≤ a2ν (10)

for all permutations {σ, τ, ν} of σ\{σ0} in order for the
map to be CPTP [16, eq. (63)] and must add to 6, by
eq. (7), as N has infidelity r.
Equation (8d) holds as the Euclidean norm of any col-

umn of Nu is upper-bounded by 1 where Nu is the unital
block obtained by deleting the first row and column of
N [24]. Note: The term in the square root was only
kept to O(r); an r2 term was dropped, reducing the in-
equality from Eσ,τ ≤

√
6r − 9r2. This convention will be

followed for the remainder of the paper. This bound can
be tightened further by considering unitarity [25].

STABILIZER CODES

We now review stabilizer codes; for more details, see,
for example, Ref. [26]. Let [A,B] = AB − BA and
{A,B} = AB + BA. An n-qubit Pauli operator P is
the tensor product of n single-qubit Pauli operators, and
the weight w(P ) of a Pauli operator P is the number of
qubits P acts on nontrivially. An [[n, k, d]] stabilizer code
encodes k logical qubits in n physical qubits and is dis-
tance d; it is defined by an Abelian group S 6∋ −I of 2n−k
n-qubit Pauli operators, which can be described by a set
of generators g1, . . . , gn−k. We can define a set of 2n−k

mutually orthogonal projectors

Πs =

n−k
∏

j=1

1

2
(I + (−1)sjgj), (11)

where sj is the jth entry of the syndrome, s, and the
code space is the support of Π0. An error is detectable
if it maps the support of Π0 outside of Π0 and has no
effect if it acts trivially on Π0, that is, if it is in S. The
distance of the code is the minimal Pauli weight of an
undetectable error that acts nontrivially on Π0. For each
error syndrome s ∈ Z

n−k
2 we can find a Pauli operator

Rs satisfying RsΠsRs = Π0 which corrects the error.

We can find a set of operators {Xj , Zj : j = 1, . . . , k}
such that for all S ∈ S and j 6= k,

[Xj , S] = [Zj , S] = 0

[Xj , Xk] = [Xj, Zk] = [Zj , Zk] = 0

XjZj = −ZjXj . (12)

Let L be the projective group generated by {Xj , Zj :
j = 1, . . . , k}. Then 2−k/2LΠ0 is a trace-orthonormal
set of operators that span the code space. Therefore any
operator ρ in the code space can be written as

ρ = 2−k
∑

L∈L

Tr(LΠ0ρ)LΠ0. (13)

EFFECTIVE NOISE UNDER ERROR

CORRECTION

We now prove that, even with bad decoders (or no cor-
rection), encoding in an error correcting code decoheres
local errors.
For ideal encoding and correction operations, prepar-

ing an initial state in the code space, applying a general
local n-qubit noise process N = N (1)⊗N (2)⊗ ...⊗N (n),
and performing a syndrome measurement with the out-
come s maps the system from the support of Π0 to that
of Πs. Let p(s) be the probability of observing the syn-
drome s, which will generally depend upon the input
state. Then by eq. (6) the effective noise map from Π0

to Πs is

N (s)L,L′ =
〈〈LΠs|N |L′Π0〉〉

p(s)2k
, (14)

where the factor of 2−k comes from the normalization of
LΠs [6]. Note that it is conventional to apply a “pure
error” [27] to map back to the code space. We omit this
step to highlight the fact that syndrome measurements
alone decohere the noise.

Theorem 2. For any [[n, k, d]] stabilizer code, the average
off-diagonal elements of the logical noise under a local

noise process N =
⊗n

j=1 N (j) scales as

∑

s

p(s)N (s)L,L′ ∈ O(rd/2) as r → 0 (15)

where r = maxj r(N (j)).

Proof. By eq. (11), eq. (14) can be rewritten as

N (s)L,L′ =
∑

S,S′∈S

φ(S|s)〈〈LS|N |L′S′〉〉
p(s)22n−k

, (16)

where φ(S|s) is the sign of S in the expansion of eq. (11).
As N and the stabilizers are all tensor products, terms
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of the form 〈〈LS|N |L′S′〉〉 can be factorized. However,
this introduces a subtlety as LS may be a phase multi-
ple of an element of {I,X, Y, Z}⊗n, which needs to be
accounted for when factoring the tensor product. Let
χ(A) ∈ {±,±i} be the phase multiple of A relative to its
representative element A′ in the projective Pauli group
{I,X, Y, Z}⊗n so that A = χ(A)A′. Note that we can
ignore the ±i case as all operators under consideration
are Hermitian. Then, using NP,Q = 〈〈P |N (j)|Q〉〉/2 for
P,Q ∈ {I,X, Y, Z},

N (s)L,L′ =
∑

S,S′∈S

φ(S|s)χ(LS)χ(L′S′)

p(s)2n−k

n
∏

j=1

N (j)
LjSj ,L′

j
S′

j

.

(17)

By the definition of the code distance, SL and S′L′ differ
on at least d qubits for S ∈ SL, S′ ∈ SL′ and L 6= L′.
Therefore for any L 6= L′, each term on the right-hand-
side of eq. (17) is in O(rd/2) by lemma 1 after syndrome
measurements. Averaging over the syndromes cancels
the p(s) in the denominator.

Intuitively, syndrome measurements decohere errors
because the act of measuring projects out any Pauli in the
expansion of the output state that is not of the form LS,
thus removing the components of the output state cor-
responding to the additional Pauli operators introduced
by coherent noise.
In theorem 2, we proved that any errors are suppressed

exponentially with the code distance. To conclude that
the noise is decohered, we need to show that the off-
diagonals of the logical error matrix, E, do not scale as
the square root of the diagonals, so that the ratio of the
off-diagonals to diagonals decreases with code distance
(ie the ratio of the off-diagonal elements to the diago-
nal elements of the logical noise is less than the corre-
sponding ratio for the physical noise). To see that this
holds, at least for typical noise in non-degenerate stabi-
lizer codes, note that eq. (16) is linear in N . Writing
N =

∑

x⊂Zn
E(x) where E(x) is an error that only acts

nontrivially on qubits in x and E(∅) = I,

N (s)L,L′ =
∑

S,S′∈S,x⊂Zn

φ(S|s)χ(SL)χ(S′L′)

p(s)2n−k

×
∏

j∈x

E(x)
(j)
LjSj,L′

j
S′

j

. (18)

For a non-degenerate distance d stabilizer code, there
exists some set x of at most ⌈d/2⌉ qubits such that
E(x) cannot be corrected, that is, cancelled out when
averaged over syndromes. This set contributes a term
∑

S∈S

∏

j∈x E(x)
(j)
LjSj ,LjSj

. By reducing the generators
so that at most one generator acts nontrivially as σ on
each j ∈ x for each σ ∈ ~σ, we can find some stabilizer
such that LjSj 6= σ0 for all j ∈ x. Let

r′ = min
j,σ∈~σ

E(x)(j)σ,σ , (19)

which will be O(r) for typical noise. Then x contributes
a term that scales as at least r′|x| to the effective logical

error and so the logical infidelity scales as r′
⌈d/2⌉

or worse,
so that the off-diagonals are, at worst, proportional to the
diagonals of the logical error matrix.

As d increases, the scaling described above causes the
effective logical noise to become progressively less coher-
ent so that the Pauli twirl approximation captures the
logical noise more effectively. However, due to contribu-
tions from the coherent part of the physical noise to the
Pauli part of the logical noise, approximating the physical
noise as Pauli in order to calculate the logical noise pro-
duces inaccurate results as observed previously [3, 21].
Ref. [21] demonstrated that the coherent contribution
dominates the Pauli part of the logical noise after many
rounds of error correction. We now apply our bounds on
the scaling of errors to a more general analysis of error
accumulation in a scheme with rounds of error correc-
tion. The effective logical noise after h rounds of error
correction is

(I − E)h ≈ I − hE +

(

h

2

)

E
2
, (20)

where we have taken a binomial expansion to second or-
der in E. Assuming typical noise, the off-diagonals of
E scale at worst as O(r(d+1)/2), and the diagonals as
O(rd/2). When the noise is Pauli, the effective logical
noise on the diagonal after h rounds of error correction
will be at worst

(I − E)hσ,σ ≈ 1−O(hr(d+1)/2) +O(h2rd+1). (21)

If coherent noise is present,

(I − E)hσ,σ ≈ 1−O(hr(d+1)/2) +O(h2rd). (22)

Taking the ratio of the first and second order terms,
quadratic errors start to accumulate from Pauli noise
at hP ≈ 1/r(d+1)/2 and from coherent noise at hc ≈
1/r(d−1)/2. The coherent noise begins to dominate the
Pauli part of the effective logical noise occurs at hcrit ≈
1/r, independent of the code distance. This critical value
is consistent with the value observed in ref. [21] of 1/ǫ2,
where ǫ is the angle of rotation about the x-axis, and we
note that all of our observations hold in their specific case
when we replace r in our results with

√
ǫ, as that is how

the specified noise scales relative to our lemma 1. Be-
cause the off-diagonal terms and diagonal terms produce
the same scaling in a worst-case analysis with coherent
noise, the ratio of off-diagonal to diagonal errors is inde-
pendent of the number of rounds of error correction in
the worst-case scaling of typical noise.
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CONCLUSION

In this paper, we have shown that for generic local
noise, coherent errors are decohered by syndrome mea-
surements in error correcting stabilizer codes. Conse-
quently, error rates in logical circuits are well-quantified
by the logical infidelity. Therefore it is appropriate to
choose recovery operators to optimize the logical fidelity,
instead of other measures such as the diamond norm.
This dramatically simplifies the process of selecting re-
covery operators for general noise because the fidelity is
a linear function of quantum channels and so we can op-
timize the fidelity of the logical noise for each syndrome
independently, as noted in [8]. By contrast, if we tried to
optimize the diamond norm of the average logical noise,
we would have to simultaneously optimize all recovery
operators.

While we have only explicitly considered independent
errors, note that our arguments apply directly to corre-
lated errors of the form

N =
∑

α

pα

n
⊗

j=1

N (α,j) (23)

by linearity. The only nontrivial issue is identifying a
scaling parameter akin to the single-qubit infidelity.

Previous results have demonstrated significant logical
coherent errors [3, 7], namely, off-diagonals that scale as

r3/2 compared to diagonals that scale as r2. However,
these results were all for distance 3 codes and are consis-
tent with our results as for such codes, ⌈d/2⌉ = 2 giving

diagonals that scale as r′
2
and off-diagonals that scale

as r3/2 by theorem 2. Numerically, significant discrep-
ancies between the logical diamond norm error with and
without Pauli twirling (which removes the coherent part
of the noise) at the physical level have been observed
for high distance surface codes [4] (up to distance 10).
These discrepancies have been interpreted as suggesting
significant logical coherent errors [21]. Our results show
that these discrepancies are almost entirely due to con-
tributions to the logical infidelity from the coherent part
(ie off-diagonals) of the physical noise1, though for a spe-
cific syndrome and noise model, the effective logical noise
may appear coherent. That is, the effective logical noise
is generically very close to a Pauli channel on average,
however, it may not be the Pauli channel one would pre-
dict from the Pauli twirl of the physical noise.
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