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Spontaneous self-organization (clustering) in magnetically oriented bacteria arises from attractive
pairwise hydrodynamics, which are directly determined through experiment and corroborated by a
simple analytical model. Lossless compression algorithms are used to identify the onset of many-body
self-organization as a function of experimental tuning parameters. Cluster growth is governed by the
interplay between hydrodynamic attraction and magnetic dipole repulsion, leading to logarithmic
time dependence of the cluster size. The dynamics of these complex far-from-equilibrium structures
are relevant to broader phenomena in condensed matter, statistical mechanics and biology.

One of the distinguishing characteristics of biological
systems is the emergence of order from the interactions
of discrete active components operating far from equi-
librium. Insights into how these interacting components
produce functional structures across many length scales
is of fundamental importance in biological systems, from
collections of eukaryotic cells[1] and bacteria[2], to ant
colonies [3] and bird flocks[4]; the phenomena extend to
non-biological active matter such as colloids[5, 6] and
macroscopic robot swarms [7]. A complete description
of these systems requires not only an understanding of
the microscopic interactions between components, but
also the principles governing the dynamics of the many-
body states. In this letter, we present an experimental
and theoretical analysis of both the microscopic hydro-
dynamic interactions and onset of emergent many-body
self-organization, in a prototypical active matter system
[8, 9] - a suspension of motile bacteria.

The bacterial species selected for this study (Mag-
netotacticum magneticum AMB-1[10]) is chosen for its
innate magnetism, which renders it amenable to direct
external control [11-15], allowing systematic imposition
of orientational coherence on the population. Further-
more, the species is motile - the chemically powered flag-
ellum (a thin helical appendage responsible for cellular
propulsion) provides the source of activity. This attribute
gives rise to attractive hydrodynamic interactions be-
tween cells that produce self-organized states (clusters).

To quantify the pairwise hydrodynamic interactions
between two cells, a dilute suspension of AMB-1 is placed
in a fluid cell and subjected to an external field (H, <
100G) oriented perpendicular to the surface, using a pre-
viously described system [15, 16]. As the cells encounter
the surface, they either swim in circular planar orbits
stabilized by hydrodynamic effects[17], or align normal
to the surface and execute a lateral random walk (in a
magnetically stabilized state)[15]. Pairs of cells in this
latter state experience attractive hydrodynamic interac-
tions and rotate about their center of mass (Fig. 1 c, e,

inset and the supplemental videos [18]). To determine
the spatial dependence of these interactions, a pair of
AMB-1 cells is isolated in the fluid cell, far from other
cells. The pair is perpendicularly oriented under constant
H, (Fig. 1a) causing them to approach one another and
form a stably rotating doublet. Once the cells have been
brought together, the fields are removed (randomizing
cell positions) or tilted (navigating cells along diverging
paths [15]). When separated by the desired distance H, is
reapplied and the flow field mediated intercellular inter-
actions return the cells to close contact. This process is
repeated until a number (87) of trajectories are compiled,
yielding the time-of-flight (At) for the cells to arrive in
the doublet configuration (close contact) and angular ve-
locity (w) as a function of intercellular distance (r), as
shown in Fig. 1 c,e.

We attribute the attractive interaction between cells
to Stokeslet (1/r) [19] dominated flow fields (the flow
arising from a point force) associated with the flagellum.
Freely swimming organisms at low Reynolds number (Re)
are generally considered to be force- and torque-free [20].
Hence, the leading order term in the multi-pole expan-
sion of the flow field is taken to be a Stokeslet dipole.
However, a power series fit suggests the presence of lower
order terms (Fig. 1c), implying that an unpaired force
monopole f,, acts on the fluid. The force free condition
is then maintained by the balance of the flagellar thrust
by the surface. We therefore model the cell’s flow field
using a singularity system comprising a Stokeslet along
with its image system (accounting for the surface [21]
Fig 1b). The radial component of the flow velocity w,.(r)
in the plane of the singularity, which is assumed to be
proportional to the force between the cells, is given by,

un(r) = fm 12h3r _ Lar (1)
"N 8mm (4h2 4 12)5/2 0 2.dt
where h the height of the singularity; dr/dt is the rate

of change of the intercellular separation and 7 the dy-
namic viscosity of water. The time At required to travel
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FIG. 1. a) schematic of oriented cells and resulting hydrody-
namic interaction. b) Flow field of a pure Stokeslet at height
h from a surface with image system (force monopole, force
dipole, source dipole). Inset, profile of the velocity (Eq. 1)
derived from the flow field along the dashed line at height
h above surface.) c¢) time of flight (t) vs intercellular spac-
ing (r) for 87 cellular trajectories from three distinct pairs of
cells, along with fit to model (in red) and power series (blue)
revealing presence of lower order (1/r) terms. Vertical line
indicates the minimum cell separation d from fit. Inset, mi-
croscopy images of cells forming a rotating doublet. d) Flow
field of a rotlet dipole and image system, along with the sin-
gularities. e) the angular velocity (w) vs 7 with fit to rotlet
dipole (1/r*) model (red).

r(um)

from an initial separation r to a final closest contact dis-
tance d is determined by integrating Eq. (1). Least-
squares fits to a running average of the data show good
agreement and yield reasonable estimates for the three
parameters, f,,, d and h. In particular, a singularity
height of h = 2.6 £ 0.1um (comparable to average cell
length ~ 3um[22]), a minimum intercellular spacing of
d = 1.8 + 0.2um (agrees with optical image of doublet)
and a flagellar thrust f,, = 0.20 & 0.02 pN (consistent
with previous measurements of hydrodynamically analo-
gous species [23-25]) are obtained.

The source of the rotational motion is ascribed to a
rotlet dipole field (~ 1/73) emanating from the rotating
flagellum and counterrotating body [21] (Fig. 1d). The
measured angular velocity of the cells about their cen-
ter of mass along with a fit to a rotlet dipole flow field
model (Fig. 1le) shows good agreement. The observed

clockwise rotation (viewed from above) for all intercellu-
lar separations r implies the net rotation of the cell pair
is dominated by coupling of the cell body (rather than
the flagellum) to the rotlet dipole field. The body has a
larger drag coefficient and hence couples more strongly
to flow than the flagellum leading to unidirectional mo-
tion. The rotation of the flagellum merely attenuates the
net effect (rotlet dipole flow field decays as w ~ 1/r3 |
relative to rotlet field w ~ 1/r?).

In the many-body case, the attractive hydrodynamic
forces result in the formation of clusters, which continu-
ally rearrange and rotate under the influence of the rota-
tional effects (Fig. Sla and the supplemental video [26]),
analogous to previous observations of spontaneously ori-
ented non-magnetic bacteria [27, 28]. The effect of these
rotational flows, along with the packing problems created
by the spirochete AMB-1 cell morphology[10], prevent
the onset of crystalline order within the cluster. Numeri-
cal simulation of the dynamics based on an Euler method,
including a Stokeslet derived interaction with a screen-
ing cutoff and a stochastic force accounting for Brownian
and biogenic noise displays good agreement with the ex-
perimental results [29)].

To quantify the self-organization, a Lempel-Ziv com-
pression algorithm [30] is applied to each recorded im-
age. Asrecently demonstrated [31], this algorithm, which
is widely used in file compression applications, yields
the computable information density (CID), fe, which
bounds the Shannon entropy [31] and is defined as

_ L(=)

fo= = (2)
where £(x) is the length of a losslessly compressed string
x and L is its uncompressed length. For non-equilibrium
processes, traditional methods for characterizing order-
disorder transitions often fail, and in many instances, the
order parameters are unknown. Nonetheless, the CID
provides a generic measure of the order in the system
without knowledge of the particular nature of the order-
ing. Simply compressing each successive microscopy im-
age and recording the file size allows the determination
of the experimental conditions under which the informa-
tion entropy drops in time. This allows a phase boundary
to be constructed without explicitly identifying an order
parameter.

To define the onset of self-organization, a pulsed field
sweep is conducted. Fig. 2 illustrates self-organization
for a suspension observed in wide field (20x objective,
see Supplemental videos [32]). At t = 0, the field
(H, = 10— 100G) is turned on resulting in an initial rise
in f.. This transient (~ 1-2 seconds) results from the
rapid increase in the number of oriented cells swimming
towards the surface, as well as the finite re-orientation
time of cells already at the surface upon application of
H,. Once the cell density stabilizes (~ 2.5s after H, is in-
troduced), f. begins to decrease as self-organization pro-
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FIG. 2. a) f.(t) for a population subjected to 10 — 100G
fields for 55 seconds (bold arrow indicates increasing mag-
netic field). The bolder, red curve shows the most dramatic
drop in f. under a 100G field. As the field is decreased (other
colors), the extent of the decay in f. is reduced until at low
values it remains nearly static in time. inset) selected mi-
croscopy images from the self-organization process associated
with the red (100G) curve, taken at t = 2.5, 5, 25 and 50
s. b) initial (red) and final (black) values of the scaled CID
(fe/fo) as a function of field strength for various densities.
As density decreases (left to right), the self-organization dis-
appears at all field strengths (as seen in the decrease in the
shaded area) Inset, selected images from 60G field pulse show-
ing initial (red outline) and final (black outline) representative
configurations.

ceeds. Fig. 2a illustrates f.(t) for a sequence of 10 field
strengths (at roughly constant density), each beginning
from a random cell configuration. As the field strength
is decreased, the decay of f. with time is reduced un-
til no significant reduction occurs over the interval. The
gradual attenuation of the decay (Fig. 3a) indicates the
disappearance of order as the magnetic field is reduced.
It is noted that the structures themselves undergo dra-
matic qualitative changes ranging from uniform density
(t = 0s), filamentary networks (¢t = 2.5,5.0s) and iso-
lated high density islands (¢t = 25, 50s), for the high field
(100 G) example depicted in Fig. 3 a,inset.

To determine the effect of cell density on self-
organization, pulsed field sweep (10G - 100G) experi-
ments were repeated over a range of densities. Between
each field sweep, H, is removed, allowing the cells to ori-
entationally decohere and randomize their positions. Be-
cause cells swim freely in the zero-field state, a small frac-
tion move out of the field of observation due to aerotaxis,
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FIG. 3. Phase diagram illustrating the boundary beteween
clustered states (closed circles) and disordered states (open
circles). The color indicates the percentage drop in the scaled
CID (f./fo). The black line is a approximate power law fit
to the phase boundary. The gray line indicates the threshold
beyond which the density may not be reliably determined
optically. Hence for these points the recorded density should
be interpreted as a lower bound.

leading to a continual reduction in the density (p).To
track this decay, p is calculated directly from images by
counting the cells (before each application of H,), us-
ing ImageJ [33]. When the mean intercellular spacing
in this disordered state approaches the optical size of the
cells, this method no longer reliably measures the density
at the surface and hence merely provides a lower bound
(see Fig. 3).

To determine the presence of order at a given p and H,,
the change in f, over a fixed time interval (55 s) is calcu-
lated. To compensate for density fluctuations within the
interval, the initial and final values of f. are respectively
scaled by the zero-field CID (fy), collected before and
after application of the field. If the scaled value (f./fo)
drops more than the width of the noise in f./fy during
the time the field is applied, we infer the presence of or-
der.

Fig. 2b shows the initial (red) scaled CID (f./fo) plot-
ted alongside its final (black) value for several field sweeps
at different densities. Fig. 2b (left) is a high density case
in which f./ fo drops (shaded region) more than the noise,
at all measured field strengths. At a slightly lower den-
sity, Fig 2b (center), the onset of self-organization only
occurs when clear separation in f./fy is first evident at
H, > 20G . As the density is further reduced, the order
disappears entirely (as evidenced in the reduction in the
shaded area) at even the highest magnetic field strengths
(Fig. 2b, right) indicating a low density of oriented cells.

Fig. 3 summarizes results of 13 field sweeps conducted
with the population corresponding to Fig. 2, which al-
lows for the construction of a phase boundary separating



ordered (open circles) from disordered states (closed cir-
cles). The color bar indicates the percentage drop in
fe/ fo over the 55 s interval. Order disappears as the ori-
entational coherence across the population is destroyed
when H, approaches zero. This decoherence occurs by:
(i) the interplay between surface-induced hydrodynamic
torques and the magnetic interactions that result in pla-
nar swimming [15, 17] and (ii) increase in the orien-
tational noise[22]. Further, as p is reduced, stochastic
forces begin to dominate the coherent hydrodynamic in-
teractions when the timescale for attractive interaction
becomes comparable to that of cell diffusion. As a result,
the cells fail to attain an ordered state.

To understand the kinetics of the clustering process,
the time evolution of the radial distribution function g(r)
(Fig. 4) is computed from the microscopy images. Ini-
tially (¢ ~ 0.1s) g(r) is largely flat, apart from a cut off as-
sociated with the cell size. As clustering proceeds, a peak
associated with cell-cell close packing separation distance
grows and widens in time. The width of the peak is as-
sociated with the largest cluster dimension (~ 20um),
while its area is proportional to the fraction of cells in
the clustered state. An additional broad peak centered
at an increasing separation distance is associated with the
mean cluster-cluster distance. The probability of finding
cells separated by larger distances (> 100um) is repressed
relative to a random distribution (dashed line), corre-
sponding with the distance between clusters and voids of
reduced density.

Fig. 4, inset, shows the growth of the primary peak
(r ~ bum) area I(t), relative to the area at the initial
time Iy. After a transient (~ 1s), the growth of the
I(t), and hence the size of the clusters, scales logarithmi-
cally in time. It has been previously shown both theo-
retically and experimentally that Brownian coalescence
of monopolarly charged suspensions leads to logarith-
mic time dependence [34-36]. In these systems, particles
come into contact through random collisions and stick
through short-range contact forces (e.g. a van der Waals
interaction). As the clusters accumulate charge, repul-
sion begins to suppress the growth rate. Similarly, in
the present system, attractive hydrodynamic interactions
are opposed by magnetic dipole-dipole repulsion. While
the hydrodynamic attraction and magnetic repulsion are
both predicted to have the same long range asymptotic
behavior (~ 1/r?), the hydrodynamic effects experience
an effective cutoff, due to screening and stochastic ef-
fects. The hydrodynamic forces are of greater strength
at pum range (~ pN) relative to the magnetostatic forces
(~ 0.01pN, for magnetic moments ~ 1076 Am? [22])
for pairs of cells. However, as the clusters grow and in-
crease in total magnetic moment, the magnetic forces be-
come comparable to the hydrodynamic forces. Thus, the
structure and logarithmic kinetics of the clusters may be
understood as an interplay between attractive hydrody-
namics with a finite range and repulsive magnetic inter-
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FIG. 4. g(r), offset for clarity at t = 0.1, 1.5, 10, and 50 sec-
onds after application of a 100 Oe external field (correspond-
ing with the images in Fig. 3,a). The dashed line corresponds
with the value of g(r) expected for a non-interacting gas (a
flat distribution). Inset, shows a logarithmic increase in the
peak associated with clustered cells (red) and the logarithmic
scaling of the CID(blue) in time. Vertical dashed line indi-
cates the onset of logarithmic scaling at ¢ ~ 2s after the initial
transient .

actions that scale with the cluster size, thereby inhibit-
ing the continued rapid growth of the clusters. In this
sense, the process may be understood as an active mat-
ter analog to the self-focusing regime in passive charged
colloids [34]. Interestingly, as shown in Fig. 4, inset, the
CID also scales logarithmically in time after an initial
transient (¢ ~ 1s). This suggests a direct physical inter-
pretation of the CID as providing information about the
configurational entropy of the cells, which decreases as
they coalesce, and are constrained to occupy a smaller
volume.

In conclusion, we have shown that when oriented near
a surface, AMB-1 experience attractive hydrodynamic
interactions arising from their flagellar activity which
are well captured by a simple analytical model based
on a pure Stokeslet and its image system. Moreover,
these interactions along with dipolar magnetic repul-
sion, give rise to spontaneous, self-organized bacterial
clusters where the CID (which bounds the Shannon en-
tropy), reveals the phase boundary defining the onset
of self-organization. Kinetics of cluster growth are gov-
erned by the interplay between hydrodynamic attrac-
tive forces and magnetic repulsion, analogous to self-
focusing of charged inactive colloids. Taking advantage
of the high degree of experimental control and theoretical
tractibility of the present system, future studies should



address broad questions in non-equilibrium active self-
organization. Particularly salient are questions regarding
the specific nature of the ordering and what critical be-
havior, if any, accompanies the onset of self-organization.
Additionally, the thermodynamic implications of the re-
lationship between dissipation and structure formation
in active systems should be explored.
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