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Prototypes of quantum impurities, such as NV and SiV color centers in diamond, have garnered
much attention due to their minimally invasive and high-resolution magnetic-field and thermal sens-
ing. Here, we investiage quantum-impurity relaxometry as a method to probe collective excitations
in magnetic insulators. We develop a general framework to relate the measurable quantum-impurity
relaxation rates to the intrinsic dynamic properties of a magnetic system, via the noise emitted by
the latter. We suggest, in particular, that the quantum-impurity relaxometry is sensitive to dynamic
phase transitions, such as magnon condensation, and can be deployed to detect signatures of the
associated coherent spin dynamics, both in ferromagnetic and antiferromagnetic systems. Finally,
we discuss prospects to nonintrusively probe spin-transport regimes and measure the associated
transport coefficients in magnetic insulators.

Introduction. Quantum impurities (QI’s), such as NV
and SiV centers in diamond, display an exceptional sensi-
tivity to static magnetic fields and their spin state can be
initialized and read out optically [1–5]. These defects can
noninvasively resolve magnetic textures on lengthscales
of the order of tens of nanometers, without requiring
strong external polarizing fields [6]. The QI relaxation
rates are, furthermore, affected by the electromagnetic
noise in its vicinity, encapsulating information about the
dynamic properties of the environment. In equilibrium,
this is rooted in the fluctuation-dissipation theorem [7],
which relates the noise to the physical response function.

While the QI relaxometry has been already proposed
as a platform for studying transport properties and spa-
tial inhomogeneities in electronic systems [8], an analo-
gous theoretical framework for magnetic insulators is still
in its infancy. The QI ability to probe noise locally and
nonintrusively, however, appears particularly appealing
for magnetic insulating systems [9], as the detection of
their collective excitations, such as spin waves, is other-
wise largely limited to conventional spin-transport exper-
iments [10, 11] or microwave probes [12]. As we discuss
below, the QI relaxometry may offer a number of clear
advantages, such as a direct bulk measurement of spin-
transport coefficients.

Spin-wave relaxometry has been heretofore focusing
only on the noise emitted by a magnetic system at fre-
quencies higher than its spin-wave gap [6, 9, 13]. For a
ferromagnet, this noise reflects both the spectrum and
the distribution of its magnon gas at the QI resonance
frequency [9]. Following this approach, Du et al. [9]
have provided the first direct measurement of the magnon
chemical potential, as well as its dependence on external
perturbations, in a ferromagnetic system. However, a
variety of magnetic systems possess spin-wave gaps that
are much larger than the maximum operating frequency
of, e.g., NV centers [6]. In particular, QI relaxometry
of antiferromagnetic insulators, which have been attract-
ing much attention lately owing to their ultrafast spin
dynamics [14], has not been yet undertaken due to the
lack of a theoretical framework for the magnetic subgap

noise. In this Letter, therefore, we address the detection,
via QI relaxometry, of the magnetic noise emerging at
subgap frequencies.

The interaction between spin waves and a QI spin in-
duces transitions between its quantum states. When the
QI spin relaxes, it releases an energy proportional to its
resonance frequency, as shown in Fig. 1(a). How this
energy is converted into excitations of the magnetic sys-
tem depends on the gap of the spin-wave spectrum. If
the QI resonance frequency is larger than the spin-wave
gap, the relaxation can trigger both one- and two-magnon
processes, corresponding, respectively, to the creation of
a magnon at the QI resonance frequency or to a magnon
scattering with energy gain equal to it, as depicted in
Fig. 1(b). One can show, by using a simple model of a
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FIG. 1. Quantum-impurity relaxation via one- and two-
magnon processes. (a) The interaction between the QI spin
and a nearby magnetic system, here depicted as gas of
magnons with spin ~ and frequency ωk (with ωk=0 = ∆),
leads to a QI transition with emission of energy ~ω. (b) When
ω > ∆, the latter can result in the creation of a magnon
at frequency ωk = ω or in a magnon (Raman) scattering
with energy gain ~ω. These events contribute, respectively,
to the single-magnon, Γ1m, and two-magnon, Γ2m, QI relax-
ation rates. When ω > ∆, the relaxation rate is typically
dominated by the one-magnon processes. (c) Conversely, for
ω < ∆, one-magnon events are suppressed and Γ ≈ Γ2m. Sim-
ilar processes, in reverse, are responsible for the QI transitions
with absorption of energy ~ω.
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local coupling between the QI spin and the ferromagnetic
spin density of an ideal magnon gas, that the relaxation
rate, Γ2m, due to the two-magnon processes is suppressed
at low temperatures with respect to the one-magnon,
Γ1m, one: Γ1m ∼ T/TC while Γ2m ∼ (T/TC)2, in terms
of the Curie temperature TC . When the QI resonance
frequency lies within the gap, however, the one-magnon
scattering is prohibited and two-magnon processes over-
take the QI transitions, as shown in Fig. 1(c). Focusing
on this regime, we develop a theory of QI relaxometry
driven by two-magnon noise.

To illustrate its capability of probing spin-transport
properties and detecting dynamic phase transitions, we
discuss two main examples. First, we focus on the char-
acterization of a diffusive spin-wave transport, which is
relevant in the context of magnetic insulator-based de-
vices. Heretofore, these properties have been investi-
gated in metallic|insulating heterostructures, where in-
vasive metallic contacts are used for spin injection and
detection [10, 11]. In such setups, the spin interconver-
sion at the metal|insulator interface depends on a vari-
ety of parameters and lengthscales, which might hinder
the extraction of a bulk signal. Here, we show how the
QI relaxometry driven by two-magnon noise can over-
come these drawbacks, allowing to probe the intrinsic
bulk spin-transport properties directly. Finally, we in-
vestigate the dependence of the two-magnon noise on the
spin chemical potential in both ferromagnetic and anti-
ferromagnetic systems. We find that the two-magnon
noise can signal the precipitation of a Bose-Einstein con-
densation.

Model. In this work, we focus, for simplicity, on
axially-symmetric magnetic insulating films with approx-
imate U(1) symmetry and a strong collinear order. In
such systems, the net spin parallel to the magnetic sym-
metry axis is (approximately) conserved. The spin-wave
dynamics can then be described in terms of transport of
the conserved component of the spin density, and, mor-
ever, we can introduce a well-defined magnon chemical
potential [15–17]. In the setup we envision, illustrated
in Fig. 2, a QI spin Sqi is placed at a height d above a
magnetic film and it is oriented along its anisotropy axis
n, with z · n = cos θ. With a NV center in mind [1], we
set |Sqi| = 1. The local spin density s(r) of the magnetic
film generates a stray field B(rqi) = γ

∫
d2r D(r, rqi)s(r)

at the QI position rqi = (0, 0, d), where γ is the gyromag-
netic ratio of the film and D the tensorial magnetostatic
Green’s function [18, 19]. Up to leading order in per-
turbation theory, the Zeeman coupling between the QI
spin and the stray field induces QI transitions between
the spin states ms = 0↔ ±1 at the resonance frequency
ω±. We find the corresponding transition rate as [20]

Γ(ω±) = f(θ)

∫ ∞
0

dk k3e−2kd [Cxx(k, ω±) + Czz(k, ω±)] ,

(1)
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FIG. 2. Setup for QI relaxometry of a magnetic insulating
system. The QI spin Sqi is located at a height d above the
magnetic film and oriented along its anisotropy axis n, with
z · n = cos θ. The coordinate system has the xy plane placed
on the magnetic film, with origin aligned with the QI position.
The interactions between the QI spin and the local spin den-
sity s(r) of the magnetic film induce QI transitions between
the spin states ms = 0↔ ±1 with energy loss or gain of ~ω±
at the rate Γ(ω±).

with f(θ) = (γγ̃)2(5 − cos 2θ)/16π, where γ̃ is the QI
gyromagnetic ratio. Here, Cxx(zz)(k, ω) is the Fourier
transform of the spin-spin correlator Cxx(zz)(ri, rj ; t) =
〈{ŝx(z)(ri, t), ŝx(z)(rj , 0)}〉, which describes magnetic
noise transverse (longitudinal) to the magnetic symme-
try axis z, i.e., to the equilibrium orientation of the order
parameter. Here, we have introduced the spin density op-
erator ŝ, 〈...〉 stands for the equilibrium (thermal) average
and {...} for the anticommutator. Invoking the Holstein-
Primakoff transformation [21], i.e., ŝ+ = ŝx + iŝy ∝ â†

and ŝz ∝ â†â, with â† (â) being the magnon creation
(annihilation) operator, one can see that the transverse
and longitudinal noises emerge from, respectively, one-
and two-magnon processes. In the following, we assume
the QI frequency to lie sufficiently within the magnetic
gap, such that only two-magnon processes contribute,
i.e., Cxx(k, ω±)→ 0 [22].

Diffusive transport properties via two-magnon noise.
The longitudinal noise, Czz, can be related to the imagi-
nary part, χ

′′

zz, of the longitudinal spin susceptibility via
the fluctuation-dissipation theorem [7], i.e., Czz(k, ω) =
coth(β~ω/2)χ

′′

zz(k, ω), with β = 1/kBT and kB being
the Boltzmann constant. Thus, the two-magnon driven
QI relaxation rate is fully determined by the longitu-
dinal spin susceptibility of the magnetic system. The
latter depends on the pertinent spin-transport regime,
and it can be obtained by inverting the corresponding
spin-transport equation. As an experimentally-relevant
example, here we consider a weakly-interacting magnon
system, whose spin density dynamics can be treated as
diffusive at wavelengths larger than the magnon mean
free path `mfp, i.e.,

∂tsz + ∇ · js = − 1

τs
sz . (2)

Here, we have introduced the spin-relaxation time τs and
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the spin current js = −σ∇µ , where σ is the magnon spin
conductivity, µ = χ−1sz − γH the chemical potential, χ
the static uniform longitudinal susceptibility and H an
external magnetic field. Introducing the diffusion coef-
ficient D = σ/χ, the imaginary part of the dynamical
longitudinal spin susceptibility can be written as [23]

χ
′′

zz(k, ω) =
χ~2ωDk2

(Dk2 + 1/τs)2 + ω2
. (3)

One might notice that, in Eq. (1), the filtering function
k3e−2kd, introduced by dipolar interactions, is peaked
around the wave vector k ∼ 1/d : contributions to Eq. (1)
from smaller wave vectors are algebraically suppressed as
they have limited phase space, while the ones at larger
wavevectors are exponentially suppressed due to the self-
averaging of short-wavelength fluctuations [8]. This al-
lows us to approximate χ

′′

zz(k) ∼ χ
′′

zz(1/d) [24]. For
β~ω � 1, the QI relaxation rate reads as

Γ(ω) ∼ f(θ)
~χ
βDd2

1[
1 +

(
d
`s

)2]2
+
(
ωd2

D

)2 , (4)

where we have introduced the spin-diffusion length `s =√
Dτs. Measuring the QI relaxation rate while vary-

ing the distance between the QI and the magnetic film
should then unveil the region over which a diffusive de-
scription of transport holds, according to Eq. (4), as
well as the wavelength at which it starts breaking down.
Equation (4) shows that the relaxation rate increases
with decreasing frequency, up to become constant, i.e.,
Γ ∼ (d + d3/`2s)−2, for ω � D/d2. In this regime, one
can detect the region where d ∼ `s as the cross-over re-
gion between Γ ∼ d−2 and Γ ∼ d−6, as depicted in Fig. 3.
Within such region, we find that measuring the QI relax-
ation rates, Γ(d1) and Γ(d2), at two different distances,
d1 and d2, leads to an estimate for the spin diffusion
length as

`2s ∼
d31
√

Γ(d1)/Γ(d2)− d32
d2 − d1

√
Γ(d1)/Γ(d2)

. (5)

Since the spin-relaxation time τs and the susceptibility
χ can be directly measured, one can use Eq. (5) to ex-
tract the magnon spin conductivity σ. Such measure-
ment, which could be performed by, e.g., embedding a
NV center on a cantilever [25, 26], would provide a direct
probe of bulk spin-transport properties, not marred by
interfacial effects that affect conventional spin-transport
experiments [11]. The associated transport coefficients
cannot be easily extracted from the one-magnon noise.
Thus, our results suggest that, even when the spin-wave
gap is lower than the maximum operating QI frequency,
probing the subgap magnetic noise can provide a unique
set of information.

Magnon BEC via two-magnon noise. As an exam-
ple of detection, via two-magnon noise, of a dynamical
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FIG. 3. Measurement of the spin diffusion length `s. By vary-
ing the distance d between the magnetic film and the quantum
impurity, one can find a cross-over region between two limit-
ing behaviors of the QI relaxation rate Γ, i.e., Γ ∼ d−2 and
Γ ∼ d−6. Within this region, measuring the relaxation rate
at two different heights, d1 and d2, leads to an estimate for
the spin diffusion length `s.

phase transition, we focus on magnon Bose-Einstein con-
densation and, therefore, investigate the dependence of
the two-magnon noise on the magnon chemical potential.
Our starting point is a general U(1)-symmetric Hamilto-
nian

Hm = −J
∑
〈i6=j〉

Ŝi · Ŝj + γ
∑
i

Ŝi ·H +
K

2

∑
i

(Ŝz,i)
2 ,

(6)

where Ŝi is the dimensionless onsite spin operator at the
site ri of a lattice, which, we take, for simplicity, to be
square, H = Hz an uniform magnetic field, with H > 0,
J the exchange stiffness, and K the constant governing
the strength of the local anisotropy. First, we consider
a ferromagnetic system with easy-plane anisotropy, i.e.,
J,K > 0. Introducing the Holstein-Primakoff transfor-
mation at leading order [21], we truncate the resulting
Hamiltonian up to quadratic order and Fourier transform
it. Equation (6) is diagonalized by a magnon mode with
chemical potential µ and dispersion ~ωk = Ak2 + ∆F ,
where A ∼ JSa20 is the spin stiffness, a0 the atomic spac-
ing, and ∆F the ferromagnetic gap. In the continuum
limit, the QI spin couples to the coarse-grained spin den-
sity (in physical units). We approximate the dipolar ker-
nel D(r−r0) by a local coupling between the QI spin and
the gradient of the longitudinal spin density, sz, under-
neath it and we set θ = 0 [20, 27].

As an example, we consider yttrium iron garnet (YIG),
which is widely used in spintronic devices due to its long-
range spin-transport properties. Taking |γ| = |γ̃| =
2µB/~, where µB is the Bohr magneton, and A = 10−39

J · m2 [28], we plot in Fig. 4(a) the two-magnon driven
relaxation rate as a function of the chemical potential µ,
having set ∆F /~ = 10 GHz, ω = 1 GHz, T = 100 K and
d = 100 nm [20]. Figure 4(a) shows that, while increasing
the magnon chemical potential, which could be achieved



4

�
/
�

e
q

(a) (b)

150

100

50

µ = �F

µ/�F

0.2 0.6 1

µ = �

µ/�

0.2 0.6 1

2

4

6

8

�
/
�

e
q
⇥

1
0
3

FIG. 4. QI relaxation rate as function of the magnon chemical
potential for a QI spin interacting with (a) a YIG film at
T = 100 K, with ω = 1 GHz; (b) a MnFe2 film at T = 10 K,
with ω = 10 GHz. Each relaxation rate Γ is normalized by
its respective value Γeq in equilibrium, i.e., for µ = 0, while
the magnon chemical potential is normalized by the spin-wave
gap (∆ and ∆F for the ferromagnetic and antiferromagnetic
cases, respectively).

via, e.g., microwave pumping [9], the two-magnon noise
increases logaritmically and reaches its saturation value
in correspondence of the precipitation of Bose-Einstein
condensation, i.e., µ = ∆F . For ~ω � ∆ − µ, β∆ � 1,
and in proximity to the condensation point, i.e., µ→ ∆,
the QI relaxation rate can be approximated as [20]

Γ ∼ ~3(γγ̃)2

A3β2
ln

[
A

d2 (∆F − µ)

]
. (7)

In equilibrium (i.e., µ = 0), Γ−1 ∼ 10 ms, while at the
onset of BEC, the QI relaxation time decreases up to
Γ−1 ∼ 100 µs [29]. The latter is much shorter than the
intrinsic relaxation time of, e.g., NV centers, which can
reach seconds at T ∼ 100 K [30], suggesting that the
signal is detectable in practice.

Next, we consider an antiferromagnetic system with
easy-axis anisotropy, whose energetics can described by
Eq. (6) setting K,J → −K,−J , while keeping K,J > 0.
Introducing the Holstein-Primakoff transformation up to
leading order and, consequently, a Bogoliubov transfor-
mation (see, e.g., Ref. [31]), we can diagonalize the result-
ing Fourier transform of Eq. (6) in terms of two magnon
eigenmodes, each one carrying spin angular momentum
±~, whose distribution function are characterized by the
dispersion dispersion ~ωk ∓ γH and chemical potential
±µ [17]. Here, we have introduced ~ωk =

√
∆2 + (ck)2,

with c ∼ JSa0 being the spin-wave velocity and ∆
the antiferromagnetic gap. The QI spin couples to the
coarse-grained spin density (in physical units) of both
sublattices. Focusing on the antiferromagnetic insulator
MnFe2, we take c = 10−31 J · m (having set a0 = 4 Ȧ)
and ∆/~ = 1 THz [31]. We set d = 100 nm, T = 10
K, ω = 10 GHz and H = 0. Figure 4(b) shows that the
QI relaxation rate increases logarithmically with increas-
ing chemical potential, in analogy with the ferromagnetic
case [20]. Indeed, for ω � ∆−µ, β∆� 1, and in proxim-
ity of the condensation point, i.e., µ→ ∆, the relaxation

rate can be approximated as [20]

Γ ∼ ~3(γγ̃)2∆3

c6β2
ln

[
A

d2 (∆− µ)

]
. (8)

In equilibrium (i.e., µ = 0), Γ−1 ∼ 10 ms, while at the
onset of BEC, the QI relaxation time decreases up to
Γ−1 ∼ 1 µs [29]. As could be expected, the QI relaxation
rate decreases with increasing distance d (albeit only log-
arithmically), as shown by Eqs. (7) and (8).

Discussion. Although the QI relaxometry of mag-
netic insulators has so far been primarily focused on
the one-magnon noise [9], subgap magnetic fluctuations
have been recently detected near a YIG film [32]. In
this work, we relate the leading-order subgap magnetic
noise to two-magnon Raman processes. We show that
two-magnon driven QI relaxometry can be used as a
direct probe of spin-wave bulk transport properties of
magnetic insulators, which cannot be easily extracted
from the one-magnon noise. With the growing interest
in insulating systems with long-range spin-transport ca-
pabilities, we propose QI relaxometry as a direct probe
of key quantities such as the spin-diffusion coefficient
and spin-relaxation time, without a need to fabricate
metal|insulator heterostructures. While we have, for sim-
plicity, focused on the diffusive transport, our framework
can be applied also to other transport regimes.

Our results suggest that magnon Bose-Einstein con-
densation can be detected via two-magnon noise in both
ferromagnetic and antiferromagnetic systems. Our find-
ings can be readily tested experimentally in ferromag-
netic insulators, such as YIG, and, most importantly,
they open up new prospects for detecting magnon con-
densation, induced by, e.g., thermal gradients [33], in an-
tiferromagnetic insulators. With its combined capabili-
ties, QI relaxometry of the two-magnon noise can also
shed light on spin transport and dynamics in systems in
which thermal spin waves coexist with a superfluid con-
densate of magnons [34].

In this work, we focused on magnetic insulators, where,
due to the lack of charge noise, we can directly relate the
QI relaxation rates to one- and two-magnon processes.
Our theory, however, can be applied also to conducting
materials, in the regimes where the magnetostatic noise
associated with spin-density fluctuations dominates over
the electronic (Johnson-Nyquist) noise.

Future work should investigate the role of higher-order
magnon processes. While generically, at lower tempera-
tures, we may expect for such processes to give only small
corrections, they might become important at the onset of
a singularity, such as that triggered by the magnon Bose-
Einstein condensation [cf. Eqs. (7) and (8)]. This may
affect the fate of the logarithmic singularity derived here,
at the onset of a dynamic phase transition.
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