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Abstract: Two-dimensional topological solitons, commonly called skyrmions, are extensively 

studied in solid-state magnetic nanostructures and promise many spintronics applications. 

However, three-dimensional topological solitons dubbed hopfions have not been demonstrated 

as stable spatially localized structures in solid-state magnetic materials. Here we model 

existence of such static solitons with different Hopf index values in noncentrosymmetric solid 

magnetic nanostructures with perpendicular interfacial magnetic anisotropy. We show how 

this surface anisotropy, along with the Dzyaloshinskii-Moriya interactions and the geometry of 

nanostructures, stabilize hopfions. We demonstrate knots in emergent field lines and 

computer-simulate Lorentz transmission electron microscopy images of such solitonic 

configurations to guide their experimental discovery in magnetic solids. 

 

Topological solitons exist in the effective field theories of many physical systems, ranging from 

nuclear to condensed matter physics [1-9]. For example, two-dimensional (2D) particle-like 

skyrmions are solitonic field configurations classified by elements of the second homotopy group 

 and indexed by a topological charge, the skyrmion number. Such skyrmions are widely 



 2

studied in solid magnets due to the wealth of new fundamental physical phenomena and potential 

for technological applications [9-13]. Of particular interest is realization of solitons in various 

nanostructures, like thin films and channels, which may enable new breeds of magnetic memory 

units and spintronics applications [9-13]. Three-dimensional (3D) Hopf solitons, or hopfions, are 

field configurations localized in all three spatial dimensions, embedded in a uniform far-field and 

identified as maps from  to the order-parameter space (target space)  of three-

dimensional unit vectors; they belong to the third homotopy group  . Topologically 

distinct hopfions are characterized by the Hopf index  with a geometric interpretation of the 

linking number of any two closed-loop preimages [14], regions in space with the same 

orientation of field corresponding to a single point on . Hopfions were predicted in many 

physical systems [1-3,6-8,15-21] and stable static hopfions were recently demonstrated 

experimentally in liquid crystals [17] and chiral colloidal ferromagnets [18,19] through direct 3D 

imaging and numerical simulations. Dynamically propagating or precessing hopfions were 

modeled in ferromagnets [15,16,22] while static hopfions comprising knots of skyrmions were 

considered in frustrated magnets [8], though host materials with the required frustration remain 

to be identified [8]. The feasibility of realizing stable hopfions in widely studied chiral magnets 

or magnetic nanostructures remained unknown.  

In this work, we perform numerical simulations and predict stable static hopfions in 

noncentrosymmetric magnetic nanostructures with perpendicular magnetic anisotropy (PMA) at 

their interfaces. We show that, in addition to Dzyaloshinskii-Moriya interactions (DMI) [10], 

confinement and interfacial PMA stabilize hopfions [23]. We focus on fully non-singular field 

configurations, skyrmions and hopfions with different Hopf indices, and study knots in 
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preimages and in emergent field associated with them; solitons accompanied by singular point 

defects (Bloch points), such as chiral bobbers [24] and torons [25], will be explored elsewhere. 

To facilitate experimental discovery of these structures, we construct diagrams of structural 

stability of localized field configurations versus material and geometric parameters and applied 

magnetic field. We also numerically simulate their Lorentz transmission electron microscopy 

(TEM) images and discuss how hopfions can be identified using real-space imaging techniques 

[11,26,27]. 

A computer simulated structure of magnetization field  of the Hopf soliton is shown 

in Fig. 1. It features closed-loop preimages corresponding to all points of , with each pair of 

distinct preimages linked the same  number of times. The exterior of the torus-embedded 

region is occupied by the preimage of the point in  corresponding to the far-field background 

 (set along ), within which all other preimages are smoothly embedded (Fig. 1). Such 

elementary Hopf solitons comprise inter-linked closed-loops preimages of constant , in this 

resembling the topology of mathematical Hopf fibration [28]. Due to the field topology, the 

emergent magnetic field  [29-31] of a solid-state elementary 

hopfion spirals around its symmetry axis with a unit flux quantum [Fig. 1(c) & 1(d)]. 

Remarkably, each pair of streamlines of , describing the interaction between conduction 

electrons and the spin texture [9], are linked exactly once and again resemble the Hopf fibration 

[28].  

Stability of Hopf solitons in chiral colloidal ferromagnets is enhanced by chirality 

(analogous to DMI) and typically strong perpendicular boundary conditions for  at 

confining surfaces [18,19], with the latter setting the uniform far-field background . In solid-
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state ferromagnets the surface interactions of  are weak and commonly neglected. However, 

strong effective PMA has been found at the interfaces of strained chiral magnets [32,33], 

magnetic metal and oxide interfaces [34], metallic multilayers [35], and chiral 

magnet/ferromagnet heterostructures [36,37]. The magnetic anisotropy energy in strained MnSi 

due to a lattice mismatch layer is ~100 kJm-3, which could enable an interfacial PMA within 0.1-

1 mJm-2 when induced in thin layers near the surface [33]. Experimentally measured PMA values 

of 1-2 mJm-2 were reported for the interface of magnetic metal/alloy and oxide [34]. A multilayer 

structure FeGe/Fe/MgO can be designed such that the effect of PMA on the Fe/MgO interface is 

transferred to FeGe by exchange coupling [34,37]. These advances in controlling PMA bring 

about the possibility of using surface confinement and boundary conditions to control stability of 

solitonic  structures, similar to the case of surface anchoring boundary conditions in liquid 

crystals [18,19]. Below we show that strong interfacial PMA stabilizes a host of solitonic 

structures, including hopfions (Fig. 1). 

We perform energy-minimizing routines on a micromagnetic Hamiltonian of an isotropic 

chiral magnet that contains both bulk and surface terms [38] 

 

where  and  are Heisenberg exchange and DMI constants defining the helical wavelength  

,  and  are the magnetic field applied along  and the saturated 

magnetization defining the Zeeman coupling energy,  characterizes the strength of PMA,  is 

the easy-axis surface direction for  (chosen to be along the surface normal ),  and  

are the magnet’s volume and boundary, respectively. The strength of PMA can be quantified by 
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an extrapolation length , a virtual distance beyond the physical boundary where the 

hard boundary conditions are set, with  for infinitely strong PMA. To make our finding 

relevant to different material systems, we scale length in units of   and the magnetic field in 

units of , the critical field strength for field-polarized state in bulk chiral 

magnet [10]. Computer simulations are performed starting from an analytical ansatz [1] 

(previously also used to model hopfions in liquid crystals [18,19]) for a series of hetero-structure 

geometries where chiral magnetic films of thickness  are confined between thin PMA-

inducing layers (e.g. oxide or lattice mismatch layer) that define boundary conditions above and 

below the film, but not at its edges [Fig. 1(a)]. 

In nanodisks, ground-state hopfions with different Hopf indices (Fig. 2 and S1) arise 

from frustration that stems from competing terms in Eq. (1). The structural stability diagram also 

includes 2D skyrmions and topologically trivial helical, modulated helical and conical states 

(Fig. 2), though these structures and their energetic costs are also altered by the boundary 

conditions (supplementary Fig. S1). Elementary  hopfions are the ground state [Fig. 2(d)] at 

,  and the diameter of the nanodisk . Helical and 2D skyrmion 

states are hindered by high surface energy costs and exist only at large , whereas conical and 

field-polarized states appear at large fields and for tight lateral confinement. Hopfions with  

are stabile at , and future studies can explore how geometry of nanostructures can pre-

define stability of hopfions with different . Supplementary Video S1 shows the structural 

evolution starting from a hopfion when the boundary conditions are removed, demonstrating the 

role of PMA in hopfion stability.  A “half-hopfion” structure, a 3D analog of the 2D meron, can 

be stabilized for asymmetric boundary conditions [Fig. 2(f-g)]. Free boundary conditions on the 
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nanodisk edges result in the DMI-driven topologically trivial near-edge twist, consistent with the 

past studies of chiral magnetic nanostructures [39]. Computer-simulated Lorentz TEM images of 

a Hopf soliton for viewing directions along and perpendicular to  are shown in Fig. 2(c) differ 

from 2D skyrmions and other solitonic structures, which may facilitate demonstration of 

hopfions in experiments. 

Much like the skyrmionic A phase [40], hopfions can form a hexagonal 2D crystal in a 

film of thickness  (Fig. 3). In the film geometry, the translationally invariant conical state 

becomes the ground state while the hopfion crystal is metastable with its metastability dependent 

on ,  and  (Fig. 2c). Hopfion stability is aided by strong boundary conditions at . At 

no fields, metastability conditions correspond to  and , equivalent to  

nm and  mJm-2 for material parameters of FeGe and  nm and  mJm-2 for 

MnSi (Table S1). Magnetic fields parallel to  effectively aid in to the confinement and lower 

the interfacial PMA required for stability. However, these fields also promote formation of 

conical states and a larger  is needed to gain stability by extra twisting. For example, 

hopfions can be metastable up to  at , whereas magnetic fields antiparallel to 

 raise the needed interfacial PMA and lower . Lorentz TEM images of a hexagonal 

hopfion crystal [Fig. 2(f)] differs from the images of hexagonal skyrmion crystals (see Refs. 

[11,41] and computer simulated images in in Fig. S1 for comparison). Apart from the difference 

in pattern, the lattice constant is  in a skyrmion crystal [9,42] and  in a hopfion crystal. 

Hopfions also emerge in the channel geometries that can be used in the racetrack memory [12] 

and other spintronics applications (Fig. 4). Lorentz TEM images and  of these hopfions [Fig. 

4(b)] qualitatively agree with the ones in films and nanodisks, though they are asymmetrically 

ẑ

d
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squeezed due to the lateral confinement only in one direction. Interestingly, the difference 

between the hopfion crystal metastable state and the corresponding stable state is often <1% of 

the equilibrium free energy. The effects due to magnetostatic energy and various types of bulk 

anisotropy on the stability of 2D hopfion crystals in thin films or 3D hopfion crystals require 

further investigations. Our findings call for a systematic study of various material parameters and 

confinement conditions under which such solitonic condensed matter phases could arise. Since 

hopfions of various  can help embedding localized twisted regions of  in the uniform far-

field ferromagnetic background, individual isolated hopfions could potentially arise during 

magnetic switching as transient or stable structures, though their stability in bulk materials 

remains an open question outside of the scope of present work. 

Hopfions stabilized by fixed boundary conditions have their preimages closed and 

interlinked within the magnetic bulk [Fig. 1(b)]. The finite-strength interfacial PMA and the 

ensuing relaxed boundary condition allows the magnetization to deviate from  at the surfaces. 

The largest deviation angle  defines a subspace of points with polar angles  on  that 

have partially “virtual” preimages closed outside  [Fig. 2(d) and 2(e)] but confined within the 

extended volume  defined by the extrapolation length. At ,  and , but 

both increase with  until a threshold beyond which an abrupt transition to a structure without 

closed-loop preimages happens, making hopfions unstable. These hopfions can be analyzed by 

numerically integrating the Hopf index [19,43-45]: 

 

Q m(r)
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Ω
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Where ,  is the Levi-Civita totally antisymmetric tensor,  is defined as 

, and summation convention is assumed. For example, integration gives 

 at  and , consistent with  obtained from the geometric 

analysis of preimage linking. 

To conclude, through numerical modeling, we demonstrate ground-state and metastable 

hopfions in isotropic chiral magnets under nanoscale confinement of circular nanodisks, thin 

films and channels, including metastable hexagonal hopfion crystals in a thin film. Further 

extension of our model to include magnetostatic energy and bulk anisotropy terms can alter free 

energy landscape and could be leveraged to further enhance stability of hopfions. The capability 

of encoding 1, 0, and -1 and other states in the topological charges of 3D Hopf solitons in a chiral 

magnet can lead to new architectures of data storage devices and other spintronics applications. 

Computer-simulated Lorentz TEM images of hopfions in common chiral ferromagnets like MnSi 

and FeGe sandwiched as nanostructures between layers inducing PMA exhibit unique features 

that will enable their experimental identification and potentially even assignment of Hopf index 

values. 

We acknowledge discussions with P. Ackerman, M. Dennis, D. Foster, N. Nagaosa, H. 

Sohn, A. Thiaville, Y. Tokura and X. Yu and funding from the U.S. Department of Energy, Office 

of Basic Energy Sciences, Division of Materials Sciences and Engineering, under the Award 

ER46921. This work utilized the RMACC Summit supercomputer, which is supported by the 

NSF (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder and 

Colorado State University. 
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Figures: 

 

 

FIG. 1. 3D topological soltion – hopfion. (a) Mid-plane cross-sections of a hopfion in the plane 

perpendicular to  (upper) and in the vertical plane containing  (lower). The magnetization fields are 

shown with cones colored according to the corresponding points on  (lower-left insets). In the x-z 
cross-section, the black stripes at the top and bottom indicate fixed boundary conditions that can be 
achieved, for example, using thin films of a different material (e.g., oxide or lattice mismatch layer). (b) 

The 3D preimages of points on  indicated as cones in the upper-right inset. The linking number of 

preimages yields . (c) Streamlines of  form the Hopf fibration. A subset of streamlines 
originating from points on a horizontal black line are illustrated by the blue lines, with some highlighted 
by red tubes to show interlinking of the ensuing closed loops, with the linking number 1. (d) Visualization 

of  by the isosurfaces of constant magnitude and streamlines with cones indicating directions.  
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FIG. 2. Stable hopfions in circular nanodisks. (a, b, c) Horizontal mid-plane cross-sections (upper) and 
vertical mid-plane cross-sections (lower) of hopfions with  and 2, respectively, shown along with 

preimages of points on  (corresponding to cones in the upper-right insets). (d) Computer-simulated 

Lorentz TEM images of a  hopfion shown in (a) for viewing directions along  (upper) and 
perpendicular to it (lower). (e) Ground-state stability diagram of solitonic structures in nanodisks. The 
parameter space of stable hopfions, skyrmions and helical states are shown in red, blue and green, 
respectively, and that for the conical state is left blank. (f) A half-hopfion with PMA only on the bottom 

interface for  and . (g) Visualization of half-hopfion’s  derived from (f) by the 
isosurfaces colored by magnitude and streamlines with cones indicating directions. 
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FIG. 3. Hexagonal hopfion crystal in a thin film of a chiral magnet. (a) Mid-plane cross-sections of a unit 

cell of the hopfion crystal in a plane perpendicular to  (upper) and in the vertical plane (indicated by a 

black line in the upper panel) containing  (lower). (b) 3D preimages of points on  indicated by 

cones in the lower-right inset. (c) Diagram of metastability of a hopfion crystal (shown in red) vs. , 

 and . (d) Dependence of  on  at . Shown in the inset is the target  with 

the boundary at  for . (e) A unit cell of the hopfion crystal confined in the space 

 extended by . (f) A Lorentz TEM image of a 2D hopfion crystal. 
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FIG. 4. Hopfions in magnetic channels shown for three unit cells. (a) Mid-plane cross-sections of a 

channel of hopfions in the plane perpendicular to  (upper) and in the vertical plane containing  
(lower). (b) Computer-simulated Lorentz TEM images of hopfions in a channel when viewed along  

(upper) and orthogonally to it (lower). (c) 3D preimages of points on  indicated as cones in the lower-
right inset.  
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