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Majorana bound states often occur at the end of 1D topological superconductor or at the π
Josephson junction mediated by a helical edge state. Validated by a new bulk invariant and an
intuitive edge argument, we show the emergence of one Majorana Kramers pair at each corner of a
square-shaped 2D topological insulator proximitized by an s±-wave (e.g., Fe-based) superconductor.
We obtain a phase diagram that addresses the relaxation of crystal symmetry and edge orientation.
We propose two experimental realizations in candidate materials. Our scheme offers a higher-order
and higher-temperature route for exploring non-Abelian quasiparticles.

Introduction.—A central theme in condensed matter
physics is to discover and classify distinctive states of
matter. Conventionally, states such as magnets or su-
perconductors are characterized by the time-reversal or
gauge symmetry that they spontaneously break. Over
the last decade, the discovery of topological insulators
(TI) has opened the door to various classes of topolog-
ical states of matter [1–4]. In each class, all the states
respect the same symmetries, yet they are indexed by
the different values of a bulk topological invariant, which
determine the physics on their boundaries of one lower
dimension. As a prime example, for a 2D/3D TI, the
nontrivial Z2 index of the insulting bulk state dictates
the presence of gapless 1D/2D edge/surface state. When
coupled to a magnet or superconductor that breaks an
essential symmetry, the boundary state may acquire an
energy gap and even be passivated [5–8].

Recently, a novel class of TIs coined “higher-order
TIs” [9–21] has emerged. They host protected gapless
states on boundaries of more than one dimensions lower.
For instance, a second-order 2D/3D TI has gapless cor-
ner/hinge states between distinct edges/surfaces that are
gapped. While the emergent corner states have been re-
alized in a phononic quadrupole TI [10], the prototype
hinge states have been responsible for a quantum anoma-
lous Hall effect [8]. These examples have enlightened the
search for fascinating higher-order topological matter.

Meanwhile, a priority in condensed matter physics is
to create topological superconductors (TSC) with Majo-
rana bound states, which offer a decoherence-free plat-
form for quantum computing [22–25]. One route [26–40]
is to employ an architecture that proximity couples an
ordinary superconductor with a material that effectively
has one helical band, which requires a magnetic field or a
π Josephson junction. While experiments are achieving
this goal [41–65], one might wonder whether there ex-
ists a new route: is there any higher-order TSC [66, 67]
whose nontrivial bulk topology leads to the emergence of
Majoranas? If in the affirmative, how such a TSC can be
realized in an experimentally accessible setup.

Here we show that a second-order TSC in class DIII
(i.e., time-reversal-invariant) can be realized by proxim-
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FIG. 1. Schematics of (a) a 2D TI proximitized by a nodeless
high-Tc (e.g., Fe-based s±-wave) superconductor yielding cor-
ner Majoranas and (b) a square-lattice model to realize (a).
Details in (b) are described below Eq. (1) in the main text.

itizing a 2D TI [68–70] with an s±-wave superconduc-
tor [71–73], as sketched in Fig. 1a. While the bulk has
an insulating gap and the edges acquire superconducting
gaps, there is a Majorana Kramers pair [74–82] at each
corner. To demonstrate this TSC, we not only provide an
intuitive edge argument but also derive a novel bulk in-
variant based on an emergent C4 symmetry. Moreover, we
obtain a general phase diagram and suggest two exper-
imental realizations. Remarkably, our scheme requires
neither a π Josephson junction nor a magnetic field, and
the superconductor used here is topologically trivial and
has a high critical temperature. Therefore, our work es-
tablishes a new route for exploring TSCs and Majoranas
in higher order and at higher temperature.
Minimal model.—We first introduce a time-reversal-

invariant (TRI) model with two orbitals per site in a
square lattice, as sketched in Fig. 1b, to describe a 2D
TI proximitized by an s±-wave superconductor,
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(
t
∑
〈ij〉x,s

− t
∑
〈ij〉y,s

+ t1
∑
〈〈ij〉〉,s

)
c†iµsσ

µν
z cjνs

+ iλ
∑
<ij>

c†iµα

(
sαβ × d̂ ij

)
z
σµνx cjνβ

+ ∆0

∑
i,σ

c†iσ↑c
†
iσ↓ + ∆1

∑
〈ij〉,σ

c†iσ↑c
†
jσ↓ + H.c..

(1)

Here s and σ are the Pauli matrices for the spin and
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orbital spaces, respectively. The t-term is the nearest-
neighbor intra-orbital hopping; it has opposite signs in
the x̂ and ŷ directions (distinguished by the solid and
dashed lines in Fig. 1b) and also for the two orbitals (dis-
tinguished by the red and blue lines in Fig. 1b). The t1-
term is the next-nearest-neighbor intra-orbital hopping;
it also has opposite signs for the two orbitals. The λ-term
arises from the inter-orbital Rashba spin-orbit coupling;
d ij is a vector pointing from site j to site i. ∆0 and ∆1

combine to provide an s±-wave pairing.
It is more convenient to rewrite Eq. (1) as the following

Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG
k =

(
hTI
k − µ

)
τz + ∆kτx,

hTI
k = [2t(cos kx − cos ky) + 4t1 cos kx cos ky]σz

+ 2λ(sin kxsy − sin kysx)σx,

∆k = ∆0 + 2∆1(cos kx + cos ky),

(2)

where µ is the chemical potential and τ are the Pauli
matrices in Nambu particle-hole notation. ∆k is the s±-
wave pairing that switches signs between the zone center
Γ (0, 0) and the zone corner M (π, π) when |∆0| < 4|∆1|.
The 2D material can acquire such an s±-wave pair po-
tential, e.g., when it is proximity coupled to a node-
less Fe-based superconductor [71–73]. Importantly, our
model Eq. (2) has time-reversal (Θ = isyK), particle-hole
(Ξ = syτyK), and inversion (P = σz) symmetries. These
symmetries can be expressed as follows

ΘHBdG(k)Θ−1 = HBdG(−k),

ΞHBdG(k)Ξ−1 = −HBdG(−k),

PHBdG(k)P−1 = HBdG(−k).

(3)

The 2D material is described by hTI in Eq. (2) and
respects the time-reversal and inversion symmetries in
Eq. (3). The spectrum of hTI is generally gapped except
when t1 = 0 or |t| = |t1|. Thus, the Fu-Kane criterion [83]
based on the eigenvalues of P at the four TRI momenta
can be used to evaluate whether the 2D material is a TI
or not. Since hTI is the same at (0, 0) and (π, π), the Z2

index is determined by the relative band inversion from
(π, 0) to (0, π). As listed in Table I, the material is a TI
for |t| > |t1| and a trivial insulator otherwise.

TABLE I. Band inversion at the TRI momenta, TI Z2 index
of hTI

k , and the second-order TSC Z2 index of HBdG
k for the

cases with t > 0 and µ = 0. The cases with t < 0 and µ = 0
can be obtained by switching the indices at (π, 0) and (0, π).
± denote the parity of the number of band inversions.

Condition (0, 0) (π, 0) (0, π) (π, π) Z2-TI Z2-TSC

t > t1 > 0 + − + + 1 1

t1 > t > 0 + − − + 0 0

t > −t1 > 0 − − + − 1 1

−t1 > t > 0 − + + − 0 0
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FIG. 2. (a) Band structure of a 2D TI ribbon exhibiting
a (01̄) helical edge state at kx = π. (b) BdG spectrum of
(a) with an s±-wave pairing. (c)-(d) Similar to (a)-(b), but
exhibiting a (1̄0) helical edge state at ky = 0. (e) Schematic
of the s±-wave pairing in the bulk BZ and the s-wave pairing
of opposite signs acquired by the two edge states. (f) Exact
diagonalization revealing the four pairs of Majoranas for the
15× 15 square size TI: the density plot displays their corner
localized probability distribution and the inset features their
symmetry enforced zero energy. We have chosen t1 = 1, t = 2,
λ = 1.5, ∆0 = 0, ∆1 = 0.5, and µ = 0.5 in all panels.

Consider the case in which the 2D TI has only one band
inversion at (π, 0). Figs. 2a and 2c plot the band struc-
tures of TI ribbons along the x̂ and ŷ directions. As an-
ticipated, the (01̄) edge state emerges at kx = π, whereas
the (1̄0) edge state emerges at ky = 0. When the Fermi
energy lies in the bulk gap, the proximity induced s±-
wave pairing ∆k can gap out both edge states by break-
ing the gauge symmetry, as shown in Figs. 2b and 2d for
the ∆0 = 0 case. For such a proximitized TI in a square
shape as sketched in Fig. 1a, in spite of the fact that the
2D bulk and the 1D edges are all fully gapped, there are
four zero-energy Majorana Kramers pairs — one at each
corner, as exhibited by Fig. 2f. Evidently, this realizes a
second-order TSC in class DIII.

An edge argument can explain the presence of a local
Majorana Kramers pair when µ is small, as illustrated
in Fig. 2e. At the (01̄) edge, the helical edge state at
kx = π acquires a negative pairing since ∆k is negative
at kx = π for all ky’s. By contrast, at the (1̄0) edge, the
helical edge state at ky = 0 acquires a positive pairing
since ∆k is positive at ky = 0 for all kx’s. In light of
the topological criterion for 1D TSCs in class DIII [74,
75], such a pairing sign reversal leads to the emergence
of a boundary Majorana Kramers pair. This argument
equally applies to the four corners in Fig. 2f.

Topological invariant.—The edge argument is intuitive
in understanding the second order TSC, yet the edge-
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state theory is only valid near the Dirac points. (In fact,
a helical edge state cannot be captured by any 1D lattice
model.) However, not only can µ be far from the Dirac
points, but ∆k also has a strong k-dependence across the
Brillouin zone (BZ). Thus, it is necessary to establish a
topological invariant by using the 2D bulk state.

The bulk model Eq. (2) is invariant under the spinful
four-fold rotation, accompanied by a gauge transforma-
tion that flips the signs of ∆1 pairing, odd-parity orbital
on one set of

√
2×
√

2 sublattices, and even-parity orbital
on the other set. This composite-C4 symmetry reads

C4HBdG(kx, ky)C−1
4 = HBdG(π − ky, π + kx) (4)

with C4 = σzτze
−iszπ/4 for ∆0 = 0. (Note that the usual-

C4 symmetry is broken.) Essentially, the four symmetry
operators fulfill the following algebra

Ξ2 = P2 = 1, Θ2 = (C4)4 = −1,

[Θ,Ξ] = [Ξ,P] = [P,Θ] = 0,

[C4,Θ] = [C4,P] = 0, {C4,Ξ} = 0.

(5)

Clearly, there are only two TRI momenta in the first
BZ that are invariant under the C4 operation: (π, 0) and
(0, π). At these two momenta, all energy states can be
labeled by the eigenvalues of C4

ξmn = eiπ[m+2(1−n)]/4, m, n = ±1. (6)

Physically, m is the eigenvalue of sz denoting up and
down spins of each Kramers doublet, and n is the eigen-
value of τz denoting particle and hole states in the BdG
formalism. Thus, ξmn transforms as follows

Θ : (m,n)→ (−m,n), Ξ : (m,n)→ (−m,−n). (7)

Evidently, states with C4 eigenvalues e±iπ/4 (or e±i3π/4)
form n = 1 (or n = −1) Kramers doublets, and these two
groups are related by the particle-hole symmetry.

We now use the eigenvalues of P to establish the bulk
topological invariant, built upon the algebra in Eq. (5).
(i) As P commutes with both Θ and C4, the two states in
each Kramers doublet (m = ±1) must share the same P
eigenvalue. (ii) In an anomaly-free lattice model, all the
particle (n = 1) or hole (n = −1) states must have an
even number of Kramers doublets with P eigenvalue −1
at the two C4 invariant momenta. (iii) As P commutes
with Ξ, the particle and hole states of opposite energies
must have the same number of Kramers doublets with P
eigenvalue −1 at each C4 invariant momentum.

Therefore, there is a Z2 topological invariant for the
studied second-order TSC: the parity of the number of
negative-energy Kramers doublets with C4 eigenvalues
e±iπ/4 (i.e., the particle states) and P eigenvalue −1 at
the two C4 invariant momenta. The odd (or even) par-
ity determines the presence (or absence) of the four pairs
of symmetry-protected Majorana corner states. This Z2

criterion can be applied to any square-shaped case (e.g.,
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FIG. 3. (a) Phase diagram of the second-order TSC vs. ∆0

and µ, distinguishing the topological (1), trivial (0), and nodal
(N) phases. (b) Effective pairing ∆eff acquired by the edge
state vs. the tilted edge orientation θ. (c) Schematic of ∆eff =
0 for the (1̄1) edge state. (d) Spatial probability distribution
revealing the four pairs of corner Majoranas for the 11 × 21
parallelogram size TI. We have chosen t1 = 1, t = 2, λ = 1.5,
∆1 = 1 in (a)-(d), µ = 0 in (b)-(d), and ∆0 = 0 in (c)-(d).

Fig. 2) regardless of orientation, as long as it respects
the C4 symmetry. Since the energy reference is the Fermi
energy and the pairing vanishes at the C4 invariant mo-
menta, the Z2 criterion is reduced to the parity of the
number of band inversions at (π, 0) and (0, π) when the
Fermi energy is in the band gap of hTI. This is consis-
tent with our numerical results summarized in Table I.
We point out that the Z2 invariant can alternatively be
proved by a bulk-boundary correspondence [84].

Phase diagram.—More generally, the protection of a
local Majorana Kramers pair only requires time-reversal
and particle-hole symmetries. The former dictates the
Kramers degeneracy, and the latter pins the Kramers pair
to zero energy. Consequently, the corner Majoranas in
Fig. 2f is robust against the breaking of inversion and
composite-C4 symmetries, e.g., by a nonzero ∆0, a tilted
edge orientation, or non-opposite hopping amplitudes, as
long as the perturbation does not close the bulk energy
gap or hybridize Majoranas at different corners.

Figure 3a shows the phase diagram of our model (2)
versus ∆0 and µ for a case in which the 2D TI has only
one band inversion at (π, 0). Since the phase diagram is
symmetric around ∆0 = 0 and µ = 0, we focus on the
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case with ∆0 ≥ 0 and µ ≥ 0. At ∆0 = 0 the C4 symme-
try is intact, and the established topological criterion is
applicable. When µ lies in the band gap of the TI, the
phase is topologically nontrivial, as there is one negative-
energy Kramers doublet with C4 eigenvalues e±iπ/4 and
P eigenvalue −1 at (π, 0) whereas none at (0, π) — the
total parity is odd. When µ crosses the conduction band,
if the Fermi surface and the nodal lines of ∆k intersect,
the phase becomes nodal. When µ is beyond the en-
tire conduction band, the phase must be trivial; at each
C4 invariant momentum the one Kramers doublet with
C4 eigenvalues e±iπ/4 and P eigenvalue −1 is below the
Fermi energy — the total parity is even.

As ∆0 increases from zero, the topological character
remains unless there is a gap closure in the 2D bulk or
at a 1D edge, as shown in Fig. 3a. When ∆0 is above a
threshold . 4∆1, the induced pair potential has a uni-
form sign at all edges, and the edge superconductivity
must be trivial without the sign reversal [74, 75]. As
µ increases from zero, the (01̄)-edge-state Fermi points
move from kx = π to kx = 0, whereas the (1̄0)-edge-state
Fermi points move from ky = 0 to kx = π. For ∆0 = 0,
the switch occurs at kc = π/2 of both edges, resulting in
an accidental gap closure near µ = 2λ sin kc. For ∆0 > 0,
however, kcx 6= kcy, and the edge gap closes and reopens
twice near µx,y = 2λ sin kcx,y; each reverses the pairing
sign of one of two edge states. As a result, the phase
is topologically nontrivial before and after the two gap
closures but trivial in between. This explains the pres-
ence of two topological domes in Fig. 3a. In addition,
the larger the value of ∆0, the smaller the nodal lines of
∆k, giving rise to the shrinking of the nodal regime in
the phase diagram with increasing ∆0.

Now we reveal the stability of Majorana corner states
against the edge orientations of 2D TI. Without loss of
generality, we study the µ = 0 case for the corner con-
necting the (01̄) edge and the edge with a tilted angle of θ
from it. Since the (01̄) edge state acquires a negative pair-
ing, the positive or negative sign of ∆eff , i.e., the pairing
acquired by the tilted-edge state, determines whether the
phase is topologically nontrivial or trivial [74, 75]. Fig. 3b
displays ∆eff versus θ, as extracted from our numerical
calculations. For ∆0 = 0, the two critical points occur
at θ = π/4 and 3π/4 where ∆eff vanishes, as illustrated
in Fig. 3c. Fig. 3d sketches a parallelogram-shaped TI
with θ = arctan 2 and features the four pairs of corner
Majoranas, demonstrating that this case is still a second-
order TSC. Generally, for a positive (or negative) ∆0, the
topological regime is enlarged (or suppressed).

Experiment & Discussion.—There are two limits for
the proximity effects. One arises from strong chemical
bonding between superconducting and normal materi-
als. Prime examples are the graphene-MoRe lateral junc-
tion with strong pz-d hybridization [85] and the intrinsic
proximity effect in FeTe1−xSex (x=0.45) [64, 65]. The
other one arises from weak electron tunneling between

superconducting and normal states [86]. This includes
our proposed setup and the observed proximity effects
in graphene-YBCO and TI-BSCCO systems [87, 88]; in
these vertical junctions, tunnelings occur between p (also
the case for PbS and WTe2 below) and d orbitals. Note
that a vertical junction breaks mirror symmetry and the
required tunneling is generally allowed. In our case, to
maintain the phase coherence of k-dependent pairing, a
lattice match between the TI and superconductor is de-
sired. IV-VI monolayers have been identified as tunable
2D TIs [68–70], with independently controllable band in-
versions at (π, 0) and (0, π) [70]. The monolayer PbS has
a square lattice constant of 4.03 Å [70], comparable to
3.95–4.05 Å of iron pnictides [73]. A proximity effect has
already been observed in PbS [89]. Thus, the PbS-iron
pnictide vertical junction can be a candidate system to
explore the proposed second-order TSC.

Although we focus on the scenario in which the 2D
TI has one band inversion at (π, 0), Majorana corner
states can exist in other scenarios. (i) Consider a TI with
one band inversion at (0, 0) or (π, π). For a dx2−y2-wave
pairing (if nodeless), very similar physics is anticipated;
for an s±-wave pairing, corner Majoranas are possible
only if the TI breaks the rotational symmetry. (ii) Con-
sider a TI with two band inversions, e.g., at (0, 0) and
(π, 0). For either aforementioned pairing, both the (01)
and (01̄) edges have dual helical edge states at kx = 0, π
and may become TSCs, whereas both the (10) and (1̄0)
edges are trivial. Interesting, monolayer WTe2 as a TI up
to 100 K [90, 91] has one band inversion at (0, 0) and may
be exploited for scenario (i). We stress that the usual-C4
symmetry must be broken in all the three models, oth-
erwise the four edges would have the same sign in pair
potential yielding a trivial phase [74, 75].

As critical advantages, our scheme requires neither a
π Josephson junction nor a magnetic field, and the su-
perconductor can enjoy a critical temperature as high
as 56 K in Sr0.5Sm0.5FeAsF [92]. In probing the Majo-
ranas, because of the Kramers degeneracy, the zero-bias
tunneling conductance is anticipated to be 4e2/h [75] at
each corner when the TSC is grounded. For a Joseph-
son junction with two corners in contact, the two Majo-
rana Kramers pairs are expected to produce a 4π periodic
fractional Josephson effect [93]. In the future, it would
be interesting to braid the second-order Majoranas that
may have non-abelian statistics [93–96] and to discover
parafermions [6, 97, 98] in higher order.
Acknowledgments.—QW and CCL contributed equally

to this work. This work was supported by ARO un-
der grant number W911NF-18-1-0416 (QW and FZ) and
NSF under award number DMR-1653769 (YML).
Note added.—During the finalization we became aware

of two complementary studies [99, 100]. Ref. 99 is based
on an edge theory of a different model without estab-
lishing a bulk topological invariant. Ref. 100 focuses on
completely different and more exotic pairing symmetries.
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