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We demonstrate that application of an oscillatory electric field to a liquid yields a long-range
steady field, provided the ions present have unequal mobilities. The main physics are illustrated by
a two-ion harmonic oscillator, yielding an asymmetric rectified field whose time average scales as
the square of the applied field strength. Computations of the fully nonlinear electrokinetic model
corroborate the two-ion model and further demonstrate that steady fields extend over large distances
between two electrodes. Experimental measurements of the levitation height of micron-scale col-
loids versus applied frequency accord with the numerical predictions. The heretofore unsuspected
existence of a long-range steady field helps explain several longstanding questions regarding the
behavior of particles and electrically-induced fluid flows in response to oscillatory potentials.

Many systems of practical and scientific importance in-
volve application of an oscillatory electric potential to a
liquid, including dielectric and impedance spectroscopy
[1–3], cyclic voltammetry [4, 5], electro-acoustics [6, 7],
dielectrophoresis [8, 9], induced charge electrokinetics
[10–13] and electrohydrodynamic manipulation of col-
loids [14–18]. In contrast to perfect dielectrics, the pres-
ence of mobile ions in the liquid phase complicates in-
terpretation of the electric field. The “standard elec-
trokinetic model” [19, 20] is a continuum level model
widely used to predict the behavior of charged ions in
solution. It couples Gauss’s law for the electric poten-
tial with the Nernst-Planck conservation equations for
each ionic species, yielding a system of nonlinear cou-
pled differential equations. For most systems of inter-
est, the model is characterized by extremely sharp gradi-
ents in the non-electroneutral ionic charge layer near any
solid/liquid interfaces [21]. Accordingly, most theoreti-
cal and numerical analyses of the standard electrokinetic
model have focused on asymptotic solutions in the limit
of small applied potentials [1, 20, 22, 23], which for si-
nusoidal applied potentials invariably yield a sinusoidal
electric field inside the liquid, albeit with phase lag and
amplitude that depend on the system properties.

Importantly, these linearized asymptotic solutions dif-
fer qualitatively from recent numerical computations of
the fully nonlinear electrokinetic model by Olesen et al.,
who found that the electric field assumes a much more
complicated shape at sufficiently high applied oscillatory
potentials [24]. This finding, which was further corrobo-
rated analytically by Stout and Khair [25] and Schnitzer
and Yariv [26], is significant because analyses of the be-
havior of individual colloids or other objects in liquids
typically begin with the assumption that the electric field
is perfectly sinusoidal, and it is unclear what the influence
of a non-sinusoidal field will be. Further complicating
matters, the prior nonlinear analyses [24–26] restricted

attention to situations where the ionic mobilities of the
positive and negative ions were equal, which simplifies
the analysis but rarely pertains to actual liquids.

To consider the effect of non-equal ionic mobilities, we
first introduce a two-ion model that illustrates how an
ionic mobility mismatch can yield a steady field nearby
(Fig. 1). Consider two isolated ions with charge numbers
q+ and q−, respectively, each oscillating in response to a
1-dimensional far-field sinusoidal electric field of magni-
tude E0 cos (ωt). The ions are treated as non-interacting
points (consistent with the continuum approximation)
but with mobilities that differ based on their drag co-
efficients in liquid with viscosity µ. Neglecting inertia
and balancing the drag force with the electrostatic driv-
ing force yields

6πµai
dzi
dt
− qieE0 cos (ωt) = 0, (1)

where zi denotes the instantaneous location of ion i with
size ai. Solving for the position yields

zi =
qieE0

ω(6πµai)
sin (ωt). (2)

The obtained harmonic oscillators of the ions zi(t) are
shown schematically in Fig. 1, where δ = a+/a− is taken
as a measure for the ionic mobility mismatch. For δ = 1,
ions oscillate with the same amplitude and the center of
charge remains stationary. However, when δ 6= 1, the
fast moving ion exhibits a higher amplitude compared to
the slow moving one, causing the center of charge itself
to oscillate.

We now ask what happens at a point z = zf far from
the ions due to their harmonic oscillation. Expansion of
Coulomb’s law in a Taylor series for zi/zf → 0, followed
by substitution of the harmonic solutions in Eq. (2) and
rearrangement, yields the perturbed electric field

ε(zf , t) =
α

z2f
[2Ê(1 + δ) sin (ωt) + 3Ê 2(1− δ2) sin2 (ωt) + 4Ê 3(1 + δ3) sin3 (ωt) + . . . ], (3)
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FIG. 1. Two-ion harmonic oscillator model. (Top) Harmonic
trajectories of two ions moving in response to a far-field sinu-
soidal electric field, for different ionic mobility ratios. (Bot-
tom) Corresponding perturbation to the electric field evalu-
ated at z = zf .

where Ê = eE0/(6πµa+ωzf ) and α = e/(4πε∞ε0). (See
supplemental for full derivation.) The observed electric
field versus time is multimodal with frequency peaks at
odd integer multiples of the imposed frequency for ions
with δ = 1, but with frequency peaks at both odd and
even integer multiples of the imposed frequency for δ 6= 1.
This mobility dependence has an important consequence
for the time average of the perturbation field near the os-
cillating ions. Integrating Eq. (3) yields the time average,
to leading order,

〈ε(zf )〉 =
ω

2π

∫ 2π/ω

0

ε(zf , t)dt=
3αÊ 2(1− δ2)

2z2f
. (4)

Provided δ 6= 1, there is a non-zero time-average elec-
tric field due to the uneven oscillation of the ions. This
phenomenon, which we denote as an “asymmetric recti-
fied electric field” (AREF), is depicted graphically along
the bottom of Fig. 1. The perturbation to the net electric
field at a location zf is dominated by the faster moving
ion, since it will be in closer proximity than the slower
moving ion. This imbalance yields a net electric field that
to leading order scales as the square of the applied field
strength.

The preceding toy model is suggestive, but it omits
ion-ion interactions and the influence of thermal energy
(i.e., diffusive motion). To capture these effects, one must
invoke the standard electrokinetic model. For simplicity,
here we focus on the 1-dimensional electric field between
parallel electrodes separated by a distance H. The liq-
uid contains two ionic species, each with concentration
ni and diffusivity Di = kBT/(6πµai), which defines the
ionic mobility mismatch δ = D−/D+. The standard elec-
trokinetic model couples Gauss’s law,

ε∞ε0
∂2φ

∂z2
= −

i=2∑
i=1

eqini, (5)

with Nernst-Planck continuity equations for each ionic
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FIG. 2. Effects of applied voltage and ionic mobility mismatch
on the electric field between parallel electrodes. (a) & (b) Har-
monic solutions of the normalized electric field Ezκ

−1/φ0 at
z = 1 µm (z/H = 0.04) for different applied voltages: (a)
δ = 1, (b) δ = 4. (c) Dimensionless time average electric

field Ẽz = Ezeκ
−1/(kBT ) versus z for different δ values. (d)

Dimensionless time average electric field versus δ value at dif-
ferent locations. Parameters: φ0 = 5kBT/e (c & d), f = 50
Hz, H = 25 µm, min [D+, D−] = 1×10−9 m2/s, c∞ = 1 mM.

species,

∂ni
∂t

= Di
∂2ni

∂z2
+ eqi

Di

kBT

∂

∂z

(
ni
∂φ

∂z

)
, (6)

The first and second terms on the right-hand side of
Eq. (6) describe the ion diffusive motion and the electro-
migration in response to the local electric field, respec-
tively. To complete the problem statement, we impose
an oscillatory electric potential of amplitude φ0 and fre-
quency f = ω/(2π) on the lower electrode at z = 0,
while keeping the upper electrode grounded. We further
impose no flux of ions through each electrode, i.e., the
electrodes are “blocking” and do not permit any electro-
chemical reactions. This assumption might not pertain
for sufficiently large applied potentials; here we focus on
the limiting case of negligible electrochemistry.

We emphasize that Eqs. (5) and (6) are the classical
starting point for analysis of the electrical behavior of flu-
ids with ionic charge. In contrast to prior work, however,
here we make no assumptions about the magnitude of the
applied sinusoidal potential, nor about the values of the
ionic mobilities. The system of equations was solved via
finite difference methods with mesh refinement to cap-
ture the extremely thin Debye layers (∼ 10 nm) near the
boundaries (supplemental material).

Examining first the case of equal ionic mobilities (δ =
1), the electric field varies sinusoidally versus time for
sufficiently low applied potentials (black curve, Fig. 2(a)
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(φe/(kBT ) = 1)), with magnitude and phase lag as
predicted by the linearized analytical solution ([1] and
Fig. S2). As the voltage increases, the contributions of
the nonlinear terms yield increasingly large multi-modal
peaks, a behavior that linearized models fail to predict.
Qualitatively similar multi-modal peaks were found pre-
viously [24–26], but here our numerics show that the
multimodal peaks occur precisely at odd integer multi-
ples of the imposed frequency, consistent with the two-
ion model (cf. Eq. (3) and Fig. S3). Note that the
observed left-right asymmetry of the harmonic solution
is a direct result of this multi-modal behavior. In the
case of non-equal mobilities (Fig. 2(b)), for sufficiently
low applied potential, the electric field is again a sim-
ple sinusoid versus time, and multi-modal peaks grow in
magnitude as the applied potential increases. Unlike the
case of equal mobilities, however, for δ = 4 the shape
of the electric field versus time is substantially shifted,
with multi-modal peaks occurring at both odd and even
integer multiples of the imposed frequency.

Numerical integration of the electric field to obtain
the time-average (cf. Eq. (4)) confirms that AREFs
occur over large length scales across the entire domain
(Fig. 2(c)). For δ = 1, the time average is identically
zero everywhere (solid red curve, Fig. 2(c)). In contrast,
for δ = 2 (dotted blue line, Fig. 2(c)), the time aver-
age electric field steeply rises from negative values near
z/H = 0, passes through zero and reaches a maximum
near z/H = 0.2, before decaying to identically zero at
z/H = 0.5. The negative mirror image of this function-
ality occurs for z/H > 0.5, i.e., the AREF is antisym-
metric with respect to position around z/H = 0.5. For
the case of δ = 1/2 (dashed black line, Fig. 2(c)), the
AREF has the same magnitude but opposite sign every-
where as for the case of δ = 2. The long-range steady
field results from the uneven oscillation of the cations
and anions, resulting in an augmentation or depletion of
charge across the domain, provided δ 6= 1 (Figs. S6 and
S7). Numerical calculations over a wide range of values
of δ confirm that the antisymmetric shape of the AREF
is robust, and further demonstrate that the magnitude
of the AREF increases with the difference between δ and
unity (Fig. 2(d)). We emphasize that the symmetry in
the system is broken by the ionic mobility mismatch, not
the relative orientation of the electrodes; the magnitude
and sign of the AREF are independent of which elec-
trode is powered or grounded. In other words, near each
electrode the AREF is directed toward the electrode for
δ > 1, but away from the electrode for δ < 1.

A perhaps surprising aspect of the results shown in
Figs. 2(c) and 2(d) is that the AREF occurs over such
long length scales, well outside of the Debye layers (lo-
cated here approximately at z/H < 0.0004 and z/H >
0.9996 for Debye length of 10 nm). Systematic calcula-
tions of the AREF over a range of applied field strengths
and frequencies confirm that this long-range behavior oc-
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FIG. 3. Effects of voltage and frequency on the AREF.
Distribution of the dimensionless time average electric field
for different voltages (a) and frequencies (b). Parameters:
φ0 = 5kBT/e (b), f = 100 Hz (a), H = 25 µm (a) and 50 µm
(b), δ = 4, D+ = 1× 10−9 m2/s (a) and 1.3× 10−9 m2/s (b),
c∞ = 1 mM.

curs over a wide range of parameter space (Fig. 3). As
the applied sinusoidal potential increases (Fig. 3(a)), the
shape of the AREF versus position is conserved (i.e., the
curves collapse), but its magnitude increases as the 1.9
power of the local peak-to-peak electric field, defined here
as Epp(z) = max (Ez(z, t))−min (Ez(z, t)). This behav-
ior is consistent with the quadratic dependence predicted
by the two-ion model (cf. Eq. (4)); the slight discrep-
ancy is presumably due to the more complicated shape
of the actual local electric field (cf. Fig. 2(b)) com-
pared to the simple sinusoid considered in the two-ion
model. In contrast, the effect of frequency is more com-
plicated (Fig. 3(b)). At very low imposed frequencies,
the AREF is small in magnitude but peaks at locations
relatively far from the electrodes. As the frequency in-
creases, the peak magnitude increases sharply, scaling as
ω1.4, while the peak location shifts closer to the elec-
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FIG. 4. Experimental evidence for AREFs: colloids levitat-
ing against gravity in response to an oscillatory field. (a &
b) Stable levitation height versus frequency for 2-µm diame-
ter polystyrene particles in 1 mM NaOH with a 4 V applied
potential. (c) Levitation height versus applied potential at
different frequencies. See supplemental for details.

trode, scaling as ω−0.5. Similarly, Fig. S5(a) shows that
the position of the peak AREF outside the Debye layer
scales as the square root of the diffusivity. Taken to-
gether, these observations indicate that the characteris-
tic length for AREFs outside the Debye layer scales as
L/H ∼

√
D/(ωH2). As the frequency increases, and

this characteristic length scale decreases, there are an in-
creasing number of positions where the AREF reverses
direction. At low frequencies, the AREF only changes
direction once before the midplane (cf. Fig. 2(c)), but
at higher frequencies it changes direction multiple times
(cf. green curve in Fig. 3(b) (f = 500 Hz)).

The existence of a long-range steady field has sig-
nificant implications for the behavior of colloids and
electrically-driven flows at the microscale. Even for a rel-
atively small applied potential of 0.5 V, applied at 100 Hz
in water with δ = 4, the AREF-induced electrophoretic
force on a 1-µm particle at z = 1 µm is a factor of 103

to 105 larger than the Brownian, gravitational, and di-
electrophoretic forces acting on it (Table S1). A key
experimental prediction, then, is that a particle placed
between parallel electrodes will levitate upward against
gravity provided the ions present have a sufficiently large
mobility mismatch.

Indeed, recent work [27, 28] has established that os-
cillatory fields do cause microscale colloids in millimolar
NaOH (δ = 3.96) to levitate many particle diameters
upward against gravity, while the same particles in mil-
limolar KCl (δ = 1.04) do not. The mechanism for this
levitation has been obscure, but the behavior is consis-
tent with our AREF hypothesis: the long-range steady
field causes the particles to move upward until the AREF
magnitude diminishes sufficiently for the electrophoretic
force to balance with gravity. The complicated spatial
dependence of the AREF also explains why some parti-
cles were observed to move upward against gravity, while
others moved downward [27, 28]. Note in Fig. 3(a) that
the AREF is negative for z/H < 0.1, but positive for

0.1 < z/H < 0.35; the direction of motion depends on
the initial particle position (Fig. S8). Our additional
experiments reveal that the levitation height scales with
frequency precisely as h ∝ ω−0.5 (Fig. 4(b)), in accord
with the frequency dependence predicted numerically (cf.
Fig. 3(b)). Simultaneously, the magnitude of the ap-
plied voltage had little impact on the levitation height
(Fig. 4(c)), again in accord with the numerical predic-
tions (Fig. 3(a)). These observations provide strong ex-
perimental evidence for the existence of AREFs in re-
sponse to oscillatory potentials.

A previously unrecognized driving force of this mag-
nitude will necessitate reconsideration of prior experi-
mental studies involving oscillatory fields; here we note
two other systems of interest where AREFs help re-
solve outstanding questions. First, there has been
long-standing controversy regarding the aggregation of
micron-scale particles near electrodes in response to os-
cillatory fields. Early workers [14–16] established that
colloids aggregated laterally near the electrode, in the di-
rection perpendicular to the applied field, and attributed
the aggregation due to electrohydrodynamic (EHD) flows
generated on the electrode surface near each particle
(Fig. 5(a)); nearby particles were mutually entrained in
the flows, resulting in aggregation. Other workers noted,
however, that the particle behavior depended sensitively
on the type of electrolyte in the liquid [29–33]. Despite a
great deal of experimental and theoretical investigation,
there is still no consensus as to the mechanism underly-
ing the electrolyte type dependence [33]. The existence of
AREFs provides a new explanation: the flow field around
each particle will be the superposition of the EHD flow
generated on the electrode [34], and an electroosmotic
flow due to the steady AREF field generated on the par-
ticle surface. If the ionic mobility mismatch is sufficiently
large, then the AREF-induced electroosmotic flow domi-
nates and the resulting flow pattern will favor separation
of nearby particles (Fig. 5(b), and Table S1).

Second, there are several unresolved aspects of
“induced charge electrokinetics” (ICEK), a type of
electrically-driven fluid flow first elucidated in 2004 by
Bazant and Squires [10, 11] that triggered much re-
search aimed at using applied electric fields to manip-
ulate flow and objects in lab-on-a-chip devices [12, 13].
The archetypal example of ICEK is the quadrupolar flow
induced around a metallic cylinder in response to the
applied field (Fig. 5(c)). Scaling up this phenomenon
for use as electrokinetic pumps in microfluidic devices,
however, revealed experimental observations that ICEK
theory fails to address [12, 13, 35]. Specifically, a re-
versal in fluid flow direction occurs at high frequencies;
the standard ICEK theory predicts no such frequency
effect. Similarly, the effect of ionic strength is unclear:
fluid flows effectively cease at ionic strengths above 10
millimolar, again at odds with the theory. The existence
of AREFs provides potential insight for both dilemmas.
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FIG. 5. Impact of AREFs on electrically-induced fluid flows
around (a & b) a charged non-conducting sphere near an elec-
trode and (c & d) around an isolated metallic cylinder. (See
supplemental for streamline calculations.)

Taking the archetypal case of fluid flow around a con-
ducting cylinder, the actual flow field will be the super-
position of the ICEK flow and electroosmotic slip along
the cylinder surface due to the AREF (Fig. 5(d)). De-
pending on the frequency and position of the cylinder, the
AREF electroosmotic velocity can dominate the flow pat-
tern. Moreover, the AREF-induced slip velocity scales as
c−1∞ (cf. Fig. S5(b)). Therefore, any experiments aimed
at elucidating the ionic strength dependence of ICEK
would need to take into account the confounding effect
of AREF-induced flows. More research is needed; the
analysis presented here should serve as a starting point
for consideration of the influence of AREFs in these and
more complicated systems.

This material is based upon work supported by the
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1664679.
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