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The self-similar nonlinear evolution of the multimode ablative Rayleigh-Taylor instability is studied 
numerically in both two- and three dimensions. It is shown that the nonlinear multimode bubble-front 

penetration follows the 
2

( )b TA gdtα ∫  scaling law with αb dependent on the initial conditions and ablation 

velocity. The value of αb is determined by the bubble competition theory, indicating that mass ablation 
reduces αb with respect to the classical value for the same initial perturbation amplitude. It is also shown 
that ablation-driven vorticity accelerates the bubble velocity and prevents the transition from the bubble 
competition to the bubble merger regime at large initial amplitudes leading to higher αb than in the classical 
case. Due to the dependence of αb on initial perturbation and vorticity generation, ablative stabilization of 
the nonlinear ARTI is not as effective as previously anticipated for large initial perturbations. 

 
The Rayleigh-Taylor instability (RTI) occurs when a 

heavy fluid is accelerated against a light fluid [1-2]. It 
develops in a multitude of natural and engineering systems, 
such as jet-driven lobes in the intergalactic cluster [3], 
supernova explosions [4], and inertial confinement fusion 
(ICF) [5]. In ICF, a low-density hot plasma pushes on the 
cold dense shell and the RTI growth is affected by mass 
ablation off the unstable interface. In this case, the RTI is 
often referred to as Ablative RTI (ARTI) as opposed to the 
classical RTI (CRTI) of two superimposed inviscid fluids. 
In ICF implosions, the ARTI seeded by short wavelength 
target surface roughness or laser imprint [6] can severely 
degrade the implosion performance and prevent 
thermonuclear ignition of the fusion fuel. ARTI also plays a 
central role in the evolution of supernova (SN) explosions, 
where it is the dominant process accelerating deflagration 
front [7]. 

The RTI perturbations usually consist of multiple modes. 
The nonlinear RTI theory predicts that the multimode 
interaction can reach a self-similar regime with the bubble 

penetration distance hb=αbATS [8]. Here 
2

( )S gdt= ∫ , g 

is the time-dependent acceleration, AT= (ρh-ρl)/(ρh+ ρl) is 
the Atwood number, ρh and ρl are the density of the heavy 
and light fluids. In the constant acceleration limit, 
hb=αbATgot2 [9-11]. The coefficient αb is expected to be 
constant in time and its value determines the nonlinear 
evolution of the RTI. For instance, the value of αb is crucial 
to resolving the long-standing question of whether 
deflagration alone can account for an SN explosion, or if 
detonation is required [12]. Moreover, αb determines the 
mixing rate of the radioactive material in supernova ejecta, 
which is further invoked to explain the measured light 

emission curves [13]. In a successful ICF implosion, the 
RTI bubble penetration (αbATS) must be less than the in-
flight shell thickness (Δ) to prevent shell break-up [14-16]. 
The importance of αb in ICF is also manifested through the 
minimum kinetic energy (KEmin

ig) required for ignition that 
scales as KEmin

ig~αb
3 [17-18]. A more unstable implosion 

would require a kinetic energy increasing like αb
3. 

Nonlinear RTI and its growth rate αb are also important in 
many other systems, such as neutron stars [19], 
photoevaporated interstellar clouds such as the Eagle 
Nebula [20], overturning circulation in the ocean and 
atmosphere [21], and tokamak stability [22]. Theoretically, 
self-similarity can be achieved in two limiting ways, i.e. 
bubble merger [9,23] and bubble competition [24-25]. The 
former regime is insensitive to the initial condition and a 
universal αb value is expected. In the latter regime, αb 
increases logarithmically with the initial perturbation 
amplitude h0 and can be approximated by [10]  
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The coefficient C and k0 are two parameters determined by 
comparing with experiments or simulations.  

CRTI experiments show αb≈0.04-0.08 [11], while ARTI 
experiments by laser direct drive show lower values 
αb≈0.04 [26]. Recent ARTI experiments by indirect drive 
show that the multimode ARTI can grow faster than Haan’s 
multimode model [27-28], suggesting that some nonlinear 
physics is missing in current understanding. Meanwhile, 
limited theoretical or numerical work on the self-similar 
multimode ARTI has been carried out with the exception of 
Ref. [14] and [16]. In both references, the ablation model 
only considers the ablative stabilization of the RTI linear 



  

growth rate but ignores the destabilization effect of the 
ablation-generated vorticity that accelerates the nonlinear 
bubble velocity (table 1). Recent studies also found that 
intense vorticity driven by finite amplitude perturbation can 
also destabilize all the linearly stable RTI modes beyond 
the nonlinear cutoff [29]. Due to the vorticity-driven 
nonlinear bubble acceleration, it seems that there is no 
general conclusion to whether mass ablation can suppress 
or enhance the nonlinear bubble-front penetration. 
 

CRTI ARTI 
TA kgγ =   

T aA kg bkVγ = −

(1 ) /b d gU g r C k= −  2 2
0(1 ) / / 4b d g dU g r C k r kω= − +

Table 1. Ablation reduces the RTI linear growth rate γ [1, 
30] while ablation-generated vorticity accelerates the 
nonlinear bubble velocity Ub [31-34]. Here k is the wave 
number. rd=ρl/ρh is the fluid density ratio. The coefficient 
b=3-4 in the regime of interest. The geometry factor Cg=3 
in 2D and Cg=1 for 3D. Va is the ablation 
velocity. ω0~kVa/rd is the vorticity at the bubble vertex.  

 
In this work, the multimode ARTI is studied numerically 

in great detail and compared with the classical case in both 
2D and 3D. It is found that the nonlinear bubble penetration 
of the ARTI is dominated by bubble competition and 
αb increases with the initial perturbation amplitude. The 
dependence of αb on initial perturbation and ablation comes 
from the bubble competition theory, indicating that mass 
ablation can reduce αb for the same initial perturbation 
amplitude. Furthermore, we show that while small scale 
perturbations reduce αb in the CRTI by enhancing the 
bubble merger effect, they can enhance αb in ARTI because 
of the vorticity-driven nonlinear bubble acceleration. Our 
results indicate that for sufficiently large initial 
perturbations, αb in ARTI can be higher than in CRTI 
resulting in larger bubble growth than predicted by classical 
theory. The ARTI bubble competition theory can be applied 
in studies of ICF implosions and supernova explosions, 
which involve significant nonlinear ARTI phenomena. 

The multimode ARTI simulations are carried out on a 
planar target using the hydrodynamic code ART [29, 33-
34]. ART solves the single fluid compressible inviscid 
equations of motion with Spitzer heat conduction and an 
ideal gas equation of state [35]. The equilibrium profile 
used in the multimode simulation is the same as in the 
single mode study in Ref. [29] (see Fig. 1 (a) of Ref. [29]). 
In the simulation, the heat flux is maintained in Z direction 
to ablate the target with ablation velocity Va=3.5μm/ns. The 
heat flux is uniform in the X and Y directions. The initial 
acceleration g0=100μm/ns2 (typical values for direct drive 
ICF). Due to rocket acceleration, the density profile varies 
in space and AT≈1. The linear cutoff wave number for the 
ARTI is kcl≈1μm-1. The RTI is seeded by velocity 
perturbations at the ablation front represented by 

0(( )) p L kkpV V cos k XX m φ= +∑  in 2D and by ( , ) kp pYV X V= ×  
4

, 1
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Here kL=2π/LX=2π/LY. LX and LY are the length of the 
simulation domain in X and Y. m and n are the mode 
numbers in X and Y. The phase terms φmni are assigned 
randomly. The dependence of Vpk on Z is 

0 0exp( | |)kpk p k ZV ZV −=  
(Z0 is the ablation front), which is the 

same as in Ref. [29]. The notation Ps(m1-m2) represents the 
power spectrum of the initial perturbation. Here m1-m2 
denotes the perturbed mode range and s denotes the 
spectrum index. For example, P2(4-16) denotes the initial 
perturbation with modes 4kL ≤ k ≤ 16kL and each mode 
amplitude decays as k-2 with 2 2

Lk k m n= + . The root-mean-
square (RMS) velocity Vrms normalized to 3.5μm/ns 
represents the overall initial perturbation amplitude. In the 
multimode simulations, hb is defined as the distance from 
the vertex of the fastest growing bubble to the initial 
ablation front in the frame of reference of the imploding 
shell. αb is calculated by fitting the linear relation hb=αbS in 
the late-time nonlinear phase since AT≈1 in the simulation. 
In our multimode simulations, the grid-cell size is 0.1μm in 
each direction. The 2D simulations are carried out with 
LX=100μm while LX=LX=50μm is used in the 3D 
simulations. The simulation domain in the Z direction is 
Lz=110μm for both 2D and 3D. In order to eliminate the 
effect of random perturbation phases, hb is calculated by 
averaging over an ensemble of simulations with the same 
perturbation power spectrum but different random phases.  
 

 
FIG. 1. (Color online) (a) hb vs S for the 2D ARTI 

simulations with different Vrms. (b) Dependence of αb on 
Vrms for both ARTI and CRTI simulations.  

Figure 1 (a) shows the nonlinear bubble penetration 
under different Vrms for the 2D multimode ARTI 
simulations with perturbation P0(4-16). These perturbed 
modes include wave numbers from the maximum linear 
growth rate to the linear cutoff.  It is shown that hb scales 
linearly with S in the nonlinear phase for all these 
simulations, indicating a self-similar nonlinear state. αb 
increases with Vrms and varies from 0.025 to 0.065. For 
comparison, 2D multimode CRTI simulations are carried 
out with the same density profile and initial perturbation. In 
the absence of mass ablation, constant acceleration 



  

g0=100μm/ns2 is used. As expected, hb also scales linearly 
with S and αb increases with Vrms.  

The dependence of αb on Vrms is shown in Fig. 1 (b) for 
both ARTI and CRTI simulations. In the CRTI simulations, 
αb increases with Vrms when Vrms is small (Vrms<0.1), 
indicating that the nonlinear CRTI is dominated by bubble 
competition. This is consistent with the fact that the 
multimode amplitude grows exponentially in the linear 
phase before it reaches the self-similar state. When Vrms 
further increases (Vrms>0.1), the CRTI transits to the bubble 
merger regime with αb independent of the initial 
perturbation. In contrast to CRTI, the ARTI is always in the 
bubble competition regime even when Vrms is large (Fig. 1 
(b)). Because of the linear ablative stabilization, larger Vrms 
are required to reach the same αb as in CRTI in the bubble 
competition regime. The simulations also show that the 
nonlinear bubble penetration of the ARTI can be faster 
(larger αb) than in CRTI when Vrms is sufficiently large. 
This occurs because at large Vrms, the ablation-generated 
vorticity enhances the bubble penetration by accelerating 
the nonlinear bubble velocity [33-34]. Due to the vorticity 
effect, the nonlinear ARTI does not transit to the bubble 
merger regime and αb keeps increasing with Vrms. It should 
be noted that in typical direct drive laser fusion 
experiments, the velocity perturbation around the ablation 
surface induced by laser speckles can easily exceed the 
ablation velocity, which may result in αb being larger than 
in classical case [29]. Similar dependence of αb on initial 
perturbation is also found in 3D simulations discussed later.  

To understand the effect of ablation on αb, the relation 
between αb and h0 is derived for the ARTI. The ARTI 
linear dispersion relation (Table 1) can be further written as 

ˆ(1 )c abVγ γ= − with ˆ /a aV k gV=  the non-dimensional 

ablation velocity (table 1) [30]. c gkγ =  is the CRTI linear 
growth rate in the AT=1 limit. Since the linear phase is 
short, we further assume that k and g are constant in the 
linear phase. Therefore, the bubble penetration distance hb 
in the linear phase can be written as: 0 exp( )b ah h t V tγ= + . 
The nonlinear phase develops at tNL when

/ / 2b bh t U C gλ∂ ∂ = = . The coefficient C is determined 
by the classical terminal bubble velocity Ub [10]. Here the 
vorticity terms are ignored for simplicity because vorticity 
is less effective on large size bubbles. Therefore, the 
nonlinear occurrence time and the correlated bubble 

penetration distance are 
0
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b NL a NLh h t V tγ= + , respectively. At t>tNL, the 

fastest growing bubble evolves similarly to the single mode 
and the penetration distance satisfies: 

/ 2
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h C g dt hλ= +∫ . Here λ is the wavelength of the 

fastest growing bubble. Applying the self-similar condition 
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ARTI. Since αb depends weakly on the variables in ln 
function and to make it more consistent with Eq. 1, the 
dependence of αb on h0 and Va is rewritten as: 

 0
ˆ(1 ) (1 / )b a bC a bCbV b k gVα α α≈ − = −                   (2) 

where αbC denotes the classical relation (Eq. 1). Equation 2 
indicates that mass ablation can reduce αb with respect to 
the classical value for the same initial perturbation in the 
bubble competition regime. The lower αb in ARTI is due to 
the reduction of the linear growth rate by mass ablation. 
Similar relation between αb and Va was derived in the 
bubble merger model without the dependence of αb on 
initial perturbation [16]. 
 

 

 
FIG. 2.  (Color online) (a) Dependence of αb on h0 for 

different ablation velocity. (b) Dependence of αb on h0 for 
2D and 3D simulations with Va=3.5μm/ns. In the 3D ARTI 
simulations, since αb is quite sensitive to initial perturbation 
at large h0, the simulation ensemble average of hb is not 
required. 

Equation 2 is further used to quantify the αb dependence 
on h0 and Va for both 2D and 3D simulations. The initial 
surface perturbation h0 in the simulation can be obtained by 
extrapolating the linear phase of the multimode amplitude 
to t=0. k0=0.06 is used to normalize h0 for all the 
simulations. Figure 2 (a) shows 2D simulation results for 
different Va. The bubble competition regime of the 2D 
CRTI can be well fitted by Eq. 1 with C=0.6. When the 
initial perturbation is significant, the CRTI transits to the 
bubble merger regime and αb is insensitive to h0 as shown 
by the saturation of the square dots in Fig. 2(a). Instead all 



  

the 2D ARTI simulation results can be quantified by Eq. 2 
with b=4.2. In the bubble competition regime, linear 
ablative stabilization reduces αb for the same h0. However, 
the nonlinear ARTI can reach larger αb values than in 
classical case at large h0 because it does not transit to the 
bubble merger regime. Figure 2 (b) shows that αb in 3D 
ARTI is higher than in 2D for the same h0 and can reach 
even higher values at large h0 because the 3D bubbles have 
higher bubble velocity and more intense vorticity [34]. 
Furthermore, the 3D simulations can also be represented by 
Eq. 2 with C=0.95 and b=4.2. The value of C in 3D is about 
1.6 times larger than in 2D, consistent with the 3D classical 
terminal bubble velocity being 1.7 times larger than in 2D 
for the same wavelength [32]. It should also be noted that 
C=0.95 in our 3D classical simulations is more consistent 
with the 3D CRTI experiments than C=0.56 in the 
simulation of Ref. [10, 25]. The value of b is the same in 
2D and 3D simulations, indicating that the effect of ablation 
in reducing αb is the same between 2D and 3D ARTI. This 
is consistent with the fact that the linear ablative 
stabilization is the same in 2D and 3D. Overall, the 
dependence of αb on h0 and Va can be quantified by Eq. 2 
for both 2D and 3D simulations. The 2D CRTI results are 
also confirmed by a different fluid code DiNuSUR [36].  
 

 
FIG. 3.  (Color online) Density contour plots in 2D 

simulations ((a) and (b)) and interface plots in 3D 
simulations ((c) and (d)) at deep nonlinear phase.  

Figure 3 shows the mode structure comparisons between 
the ARTI and CRTI simulations. In the 2D ARTI 
simulations, the bubble size is larger than in the CRTI. For 
the current perturbation spectrum, there are about 10 
bubbles in the early nonlinear phase and 2-3 bubbles in the 
deep nonlinear phase (Fig. 3 (a), indicating that the 
nonlinear ARTI undergoes about 2 generations before the 
bubbles penetrate through the target. Due to mass ablation, 
the spikes are significantly suppressed and the late-time 
nonlinear phase is far from a turbulent state. Different from 
the ablative case, the 2D CRTI simulation has smaller 
bubble size and more complex spike structures in the deep 
nonlinear phase (Fig. 3 (b)). The 3D ARTI simulation (Fig. 
3 (c)) also has larger bubble size and shorter spikes 
compared to the classical case (Fig. 3 (d)). 
 

 
FIG. 4.  (Color online) The dependence of αb on h0 for 

different initial perturbation spectrum. 

The vorticity effect on enhancing the ARTI nonlinear 
bubble penetration is shown in Fig. 4. Since vorticity effect 
is more significant for small scale perturbations, the 
dependence of αb on h0 is further investigated by 2D 
simulations using different initial perturbation spectrum. 
The perturbation P2(5-20) is dominated by large scale 
modes near m=5 (λ=20μm). The perturbation P0(20-40) is 
completely dominated by linearly stable small scale modes 
(Fig. 1 (b)), which can be nonlinearly destabilized by finite 
amplitude perturbation and can be significantly affected by 
ablation-driven vorticity [29,33-34]. In the CRTI 
simulations, the relation between αb and h0 in P2(5-20) is 
quite similar to P0(4-16). Since only short wavelength 
perturbations are initialized in P0(20-40), the multimode 
CRTI transits to the bubble merger regime at much lower h0 
and αb≈0.035 is closer to its lower limit. The CRTI 
simulations show that significant small scale perturbations 
can suppress the nonlinear bubble penetration by enhancing 
the bubble merger effect. Instead the perturbation P0(20-
40) and P0(4-16) in the ARTI simulations have similar 
dependence of αb on h0. The perturbation P2(5-20) has 
slightly smaller αb at large initial perturbation because the 
vorticity acceleration is less effective for larger size bubbles 
[33-34]. The perturbation P0(20-40) doesn’t transit to the 
bubble merger region since small scale bubbles can be 
significantly accelerated by vorticity effect thereby 
enhancing the nonlinear bubble growth. This result clearly 
shows that the ablation-generated vorticity can keep the 
nonlinear ARTI in the bubble competition region even for 
small scale initial perturbations. In the absence of vorticity, 
the small scale ARTI would behave like CRTI and 
transition from the bubble competition to the bubble merger 
regime, leading to the saturation of αb. As a result, αb in 
ARTI can reach higher value than in CRTI for sufficiently 
large initial perturbations.  

In summary, numerical simulations of the 2D and 3D 
multimode ARTI show that the nonlinear ARTI is 
dominated by bubble competition and that mass ablation 
can reduce the ARTI nonlinear bubble growth with respect 
to the classical value for the same initial perturbation 
amplitude. The ablation-generated vorticity can accelerate 
the nonlinear bubble velocity and keep the nonlinear ARTI 



  

in the bubble competition regime, resulting in higher αb 
value than in classical case at large initial perturbation. Due 
to the dependence of αb on initial perturbation and vorticity 
generation, ablative stabilization of the nonlinear ARTI is 
not as effective as previously anticipated for large initial 
perturbations. This theory can be used to explain the 
stability limits observed in direct drive ICF experiments 
[37] and details will be presented in an upcoming 
publication.   
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