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 It has long been predicted that permanent electron-positron pairs can be created from the 

quantum vacuum at those spatial regions, where an external electric field exceeds a 

supercritical value.  By solving the Dirac equation numerically, we show that the yield of 

the created positrons at targeted energies can be controlled via a second (sub-critical) 

electric field that is placed far outside the creation zone.  This is a first indication of the 

non-local character of the pair creation process as the second field can be placed at distant 

spatial regions that are never visited by the created positrons.  This rather counter-intuitive 

phenomenon can be understood in terms of a dressing of the vacuum state long before the 

particles are actually created.  We present an analytical expression for the spectrum of the 

created particles that describes all quantitative features of this dressing and predicts how the 

second field can be used to increase as well as decrease the electron-positron yield for 

desired energies. 
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The quantum field theoretical vacuum state plays a fascinating role in quantum 

electrodynamics.  For example, it can lead to various unconventional phenomena such as the 

Casimir force [1], the creation of permanent electron-positron pairs [2], or the occurrence of light-

light scattering [3].  A new way to probe its nonlinear properties has become possible due to 

dramatic advances in laser technology [4,5], which have also motivated numerous theoretical 

studies with the goal to provide guidance on optimal laser field configurations to maximize the 

observed particle yield [6].  Each of these studies focused on how the local properties of the 

external radiative environment inside the pair creation zone can be exploited to control the pair-

creation yield, leading in some cases to unexpected predictions. 

 For example, in the limit of an infinitely extended electric field, the Schwinger expression [7] 

predicts a monotonic increase of the pair creation rate with increasing field strength, which needs 

to be revised for the non-local nature of the process in spatially inhomogeneous field 

configurations [8].  A recent work [9] has suggested that the particles are not necessarily created 

in those spatial regions of the interaction zone where the electric force field is largest.  In fact, for 

some electromagnetic field configurations, particles cannot even be created in those regions 

where the field is largest.   

 In this Letter, we report on yet another counter-intuitive phenomenon that illustrates the non-

local nature of the pair-creation process.  It turns out that the energy spectra of the created 

particles can be manipulated by a second (and much weaker) external field that is localized far 

outside the pair creation zone.  Even more surprisingly, the energy distribution of the positrons 

can still be strongly affected, even if this second field is placed at a spatial region, that is never 

visited by the created positrons. 
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Figure 1   Sketch of the electric field configuration based solely on a supercritical field at x=0 (top panel).  
In the bottom panel a second (control) field at x=–d is added.  Electron-positron pairs are created from the 
vacuum solely by the supercritical field and the particles' energy is detected.  Positrons are ejected to the 
right and therefore cannot interact directly with the control field. 
 
 Before we discuss this new effect more quantitatively, let us illustrate first in the two panels in 

Figure 1 the basic geometry of the one and two-field configurations.  The top panel shows a 

typical one-field set-up for the usual electron-positron pair creation process.  Here we assume for 

simplicity that the static and localized electric field is placed at x=0 and symmetric under spatial 

inversion.  Its strength is assumed to be supercritical, i.e. its associated potential energy Vs for a 

positron exceeds 2mc2, such that after its turn on, it generates a steady flux of electron-positron 

pairs.  We assume that this field is oriented such that the created electrons (positrons) are 

accelerated to the left (right).  In order to measure the energy distribution of the created particles, 

two detectors are placed far away from the interaction zone.  As the field is chosen symmetric, the 

energy spectra of both particles are identical, as sketched in the top panel. 

 In the bottom panel, we have repeated the identical configuration, however, now a second 

(non-supercritical) field has been placed at x= – d.  As this control field is located far outside the 

creation zone, the created positrons cannot visit this spatial region and, based on locality, one 

could expect that the presence of this field cannot affect the dynamics of the created positrons.  

The positronic spectrum should therefore be identical to the one obtained from the one-field 

configuration.  It is the main purpose of this Letter to demonstrate that the pair-creation process 

has unexpected non-local features with regard to the particles.  In fact, we will provide numerical 
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as well as analytical evidence that the spectra of both particle species depend crucially on the 

control field.  This finding also suggests a novel means of manipulating the pair creation process 

from outside the pair creation zone. 

 In order to describe this new phenomenon more quantitatively, we have to briefly summarize 

the theoretical framework that permits us to compute the energy spectra, pair creation rates and 

spatial distributions of the particles.  Below we will also present analytical expressions for the 

energy spectra.  In computational quantum field theory the interaction of the vacuum with static 

electromagnetic fields is often modelled by the Hamiltonian H = c a p  + mc2 b + V(r), which 

governs both the time evolution of the four spinor components of the electron-positron quantum 

field operator (via the Dirac equation) and the dynamics of the fermion's creation and annihilation 

operators (via the Heisenberg equation).  Here a º (a1, a2, a3) and b denote the set of the four 

4´4 Dirac matrices and V(r) is the potential energy of a positron in the electric field.  

 The quantum field operator Y(x,t) can be expanded into eigenstates of the force-free 

Hamiltonian with positive and negative energies, i.e., H0 |p;uñ = E|p;uñ and H0 |p;dñ = – E|p;dñ, 

where E(p) º [m2c4+c2p2]1/2, leading to Y(x,t) º Sp [ b(p,t) |p;uñ + d(p,t)† |p;dñ], where the 

operators fulfill [b(p),b(k)†]+ = [d(p),d(k)†]+= dp,k and [b(p),b(k)]+ = [d(p)†,d(k)†]+ = [b(p),d(k)†]– 

=0.  

 The momentum (and energy) spectra of the created fermions can be computed via the 

expectation values of the positronic and electronic creation and annihilation operators as N(+)(p,t) 

º áb(p,t)†b(p,t)ñ and N(–)(p,t) º ád(p,t)†d(p,t)ñ.  We can define the energy spectra as N(±)(E,t) º 

N(±)(p,t) dp/dE, such that we have consistently for the total number of created pairs, N(t) = ∫ dE 

N(±)(E,t).  Introducing the transition matrix elements Up,k(t) º áp;u|U(t)|k;dñ, where U(t) is the 

time-ordered evolution operator associated with the Hamiltonian H, we obtain 

 

                                     N(+)(p,t)   º  áb(p,t)†b(p,t)ñ  =  Sk |Up,k(t)|2                                     (1a) 

                                          N(–)(p,t)  º  ád(p,t)†d(p,t)ñ  =  Sk |Uk,p(t)|2                                           (1b) 

 

The two energy densities can be significantly different for some electromagnetic field 

configurations, such as the one shown in the bottom panel of Fig. 1.   

 Due to the orientation of the electric fields, we describe the dynamics here by a Hamiltonian 
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in which the fields are coupled to a positive charge, such that the two expressions (1a and b) have 

the obvious interpretation that is consistent with Dirac's hole theory based on positrons.  Here the 

depletion of the initially occupied negative energy state |p;dñ (as a member of the Dirac sea that 

represents the vacuum) into the states |k;uñ corresponds to the creation of an electron with energy 

E(p), while the transition to the upper state |p;uñ (from all lower states) describes the creation of a 

positron with energy E(p).  Equivalently, for consistency, the prediction could be obtained from 

the corresponding charge-conjugated (and more traditional) hole theory, in which the initial Dirac 

state |p;dñ is evolved under the electronic Hamiltonian, such that here the depletion of the state 

|p;dñ to all states |k;uñ corresponds to the creation of a positron with energy E(p). 

 Let us discuss next the numerical data that were obtained.  The two electric fields were 

modeled by the two-step potential energy V(x) = Vc [1–Tanh((x+d)/w)]/2 + Vs [1–Tanh(x/w)]/2, 

such that V(x = – ¥) = Vc + Vs and V(x = ¥) = 0.  The spatial extension of both fields is w.  The 

energy spectra depend qualitatively on time and reflect the various stages of the particle creation.  

For short times, the spectra decrease monotonically with increasing energy E.  We focus here on 

the long-time regime, which is independent of the turn-on pulse shape.  Here the total number of 

particles N(t) grows linearly as a function of time N(t) = G t, and G is the vacuum's decay rate.  As 

the number density at each energy, N(±)(E,t), grows linearly in time, for better visibility we have 

renormalized the spectra and graphed the curves N(–)(E,t) (2p/t) and N(+)(E,t) (2p/t) in Figure 2.  

For comparison, we denote by the dashed lines the corresponding spectra for the case where the 

control field is absent (top panel of Figure 1). 

 

                   
Figure 2   The (renormalized) energy spectra N(E,t) (2p/t) of the created electrons (left) and positrons 
(right).  For comparison, the dashed lines are the corresponding spectra without the second field.  The open 
circles denote the numerical data obtained from the simulation, while the solid line is the analytical 
expressions according to Eq. (2).  The potential energy is given by V(x) = Vc[1-Tanh((x+d)/w)]/2 + Vs[1-
Tanh(x/w)]/2, where Vs = 2.5mc2, Vc =0.25mc2, w=0.075!"/(amc) and d=0.2 "/(amc), the interaction 
time was t=0.045 "/(a2mc2), and a is the fine structure constant. 
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 In the absence of the control field (Vc=0), the electronic and positronic spectra (dashed lines) 

are identical at any time, due to the assumed spatial symmetry of the supercritical field, i.e. V'(x) 

= V'(-x).  The spectrum of the electrons is modified by Vc in two ways.  First, the fact that it is 

shifted to higher energies (by the amount Vc) is expected, as, in contrast to the positrons, the 

electrons actually do pass through the region of the control field (at x = –d) and therefore 

experience an acceleration to higher energies before their detection.  We also note that the control 

field superimposes an oscillatory structure, where higher frequency oscillations are observed at 

the lower energetic part of the spectrum. 

 Remarkably, the positronic spectra with and without the control field are also entirely 

different.  While for both field configurations the observed range in energy (from E=mc2 to 

E=mc2–Vs) is identical, the presence of the control field leads to strong oscillatory modulations of 

the spectrum [10], whose amplitude is comparable to the overall strength of the signal.  In 

contrast to the electronic spectra, here the frequency of these oscillations increases with higher 

energies.  It is important to note that the maxima in the spectra are higher than the spectrum in the 

absence of the control field (dashed line).  In other words, the control field can be used to enhance 

the creation of positrons for specific energies.  In our opinion, the observed amplification also 

rejects a possible explanation of this phenomena that is based on the assumption that created 

electrons could be reflected by the control field, return to the creation zone and then subsequently 

interfere with the creation process at x=0.  This process is not so important here, as the fermionic 

Pauli suppression mechanism usually decreases the creation rate [11] at any energy.  In addition, 

the reflection likelihood of electron decreases rapidly with increasing Vc, while, as we show 

below, that the oscillation amplitudes actually increase. 

 The computational approach permits us also to examine the pair creation dynamics from a 

spatially resolved perspective.  We show in Figure 3 the corresponding spatial densities of the 

created electrons and positrons.  As expected, the supercritical field ejects the electrons 

(positrons) to the left (right).  The increased density inside the creation zone should not be 

overinterpreted, as the computation of the density was based on the projection of the electron-

positron field operator on field-free energy eigenstates, which are not so meaningful in those 

regions where the electric field is supercritical.  While the electric current density can be 

computed unambiguously everywhere in space, it is presently not fully understood how one can 

even distinguish within the interaction zone between positively and negatively charged particles.  
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The decrease of the density for x<–d reflects the higher speed of the electrons in this domain 

compared to x>-d, i.e., there are less particles per unit length. 

 The key observation here is that the positronic density (dashed line) vanishes indeed entirely 

for x<0 and particularly close to x=–d, where the control field is located.  This clearly shows that 

the positrons cannot interact with the control field after their creation.   

 
Figure 3   The spatial probability density of the created electrons (continous line) and positrons (dashed 
line) after time t=0.024 "/(a2mc2).  Other parameters are identical as in Fig. 2. 
 
 After the presentation of the numerical data, we provide an intuitive explanation of this non-

local behavior, which is suggested by the mathematical structure of the Dirac sea picture.  As 

mentioned above, here the vacuum state is represented by fully occupied negative-energy 

eigenstates of the free Dirac Hamiltonian.  The initial population of these states acts as an infinite 

reservoir for the creation of particles, associated with the transition to the Hilbert space spanned 

by positive energy eigenstates.  In contrast to the state of the created positrons, these states are 

infinitely extended in space and therefore their dynamics is impacted not only by the supercritical 

but also by the control field.  These two fields permit therefore constructive as well as destructive 

interferences, depending on the wavelength of the Dirac sea state.  As the two fields are chosen 

time-independent, a final positronic state with (positive) energy E can be traced back uniquely to 

the decay of a single Dirac sea state [12] with a (force-free) negative energy given by E–Vc–Vs 

that moves to the right (with a negative momentum).  The fact that a state with negative 

momentum has nevertheless a positive probability current density is characteristic of all negative 

energy states.  In addition, the removal of population of the same state corresponds also to the 

creation of an electron with positive energy |E–Vc–Vs|.  

 The higher frequency of the energy modulation for large positronic energies E can also be 

easily understood, as the corresponding Dirac sea state takes the momentum k º – [(Vs–E)2 – 
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m2c4]1/2/c between x=–d and x=0.  The subset of resonant momenta therefore has to fulfill |kn| d = 

n"p, with n=1,2, …, leading to an amplification for energies En = Vs – [m2c4 +(n"p/d)2 c2]1/2.  As 

the largest possible momentum |k| (associated with the lowest positron energy E = mc2) is |k| º 

[(Vs– mc2)2 – m2c4]1/2/c, therefore, the total number of maxima is given by the integer part of      

d[(Vs– mc2)2 – m2c4]1/2/(c"p), which amounts for our parameters to nmax=9, which is in full 

agreement with the number of peaks shown in Fig. 2.  The same argument predicts the occurrence 

of the higher frequency oscillations at the lower energetic part of the spectrum for the electrons 

with energy |Vc+Vs–E|. 

 Finally, we will use this understanding of the vacuum's dressing effect to provide a 

quantitative model that can reproduce all key features of the spectrum.  As detailed in a prior 

work [11-14], the energy dependence of the electrons as well as positrons can be related to the 

quantum mechanical transmission coefficient of an incoming wave packet.  If we assume that the 

spatial widths of the two electric fields at x=–d and x=0 are both infinitely narrow, then this 

coefficient can be obtained from the stationary energy eigenstates of the corresponding two-step 

potential.  For reasons of brevity we state here the final answer for mc2 < E < mc2–Vs. 

 

   N(+)(E,t) = t/(2p") 2c2 p q /[2m2c2 Vc Vs Sin2(k d/")/ k2 + E(Vs+Vc–E)  + 2c2 p q + m2c4]      (2) 

 

where p º [E2- m2c4]1/2/c, q º [(Vs+Vc–E)2–m2c4]1/2/c and k º [(Vs–E)2 – m2c4]1/2/c. 

 The corresponding spectrum of the created electrons N(–)(E,t) is different in two respects.  

First, the more frequent oscillations occur on the lower energy side, so its spectrum is reversed 

with regard to the central energy E = Vs/2.  In addition, in contrast to the positrons, it is also 

shifted, as the escaping electrons pass through the second field at x = –d , which gives the 

electrons an additional energy boost by the amount of Vc.  Therefore, the positronic and electronic 

energy spectra are related for long times via N(-)(E,t) = N(+)(Vc+Vs – E,t), where mc2+Vc < E < 

Vc+Vs– mc2.  For comparison, we have graphed the predictions of the two analytical expressions 

by the continuous lines in Figure 2.  The agreement with the exact numerical spectra (open 

circles) for the finite time t=0.045 "/(a2mc2) and the electric fields with non-zero extension is 

excellent.  The only difference is associated with the fact that the analytical expression describes 
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the true spectrum only for infinitely long times, whereas the numerical spectrum also describes 

particles that were created at the early time stages before the steady state was established. 

 The availability of a fully analytical pair creation rate permits us to address two important 

questions with regard to the scaling of this phenomenon.  In our opinion, the most important 

conclusion is the fact that the amplitudes of the oscillations do not depend on the distance d 

between the two fields.  This means that this field can be placed arbitrarily far away from the 

interaction zone in this particular one-dimensional configuration and can still affect the positrons 

with equal strength.  However, a large d also leads to very narrow oscillations that could be hard 

to be resolved in the spectrum.  Second, while the location and the strength of the control field Vc 

can be specifically tailored to increase the created particles at any desired energy, the total 

vacuum decay rate (the energy integral over the renormalized spectrum) cannot be increased by 

Vc and always decreases with increasing strength Vc, as some portion of the right traveling Dirac 

sea states are (unavoidably) reflected at x=–d and therefore cannot contribute to the pair creation 

process at x=0. 

 The interpretation of the vacuum's dressing phenomenon can be further illuminated if we 

examine the effect of a different alignment of the control field on the positrons' spectrum.  This 

comparison can be achieved by reversing the sign of Vc in Eq. (2).  An opposite orientation (Vc 

negative) manifests itself in three different ways.  First, the energy range of the detected positrons 

is now reduced by |Vc| due to the fact that only those Dirac sea states with sufficiently large 

energy can overcome the energy "barrier" provided by an electric control field that now points to 

the left.  This observation is an alternative manifestation of the non-locality.  By "cutting off" 

certain Dirac sea states from reaching the supercritical field, the pair creation process can be 

inhibited for positrons with a desired energy.  Second, the energies for maxima and minima in the 

spectrum are exchanged, as the resonance condition and the resulting phase relationships are 

shifted by p under the sign change of Vc.  Third, the envelope curve that describes the energy 

dependence of the amplitudes for each maximum takes a different form.  This envelope can be 

obtained by setting the term 2m2c2 Vc Vs Sin2(k d/")/ k2 in Eq. (2) to zero leading to max 

[N(+)(E,t)] = t/(2p")2c2pq/[E(Vs+Vc–E)+2c2pq+m2c4].  For larger energies E>Vs/2 this envelope 

increases for Vc>0 (as shown in Fig. 2), while for Vc<0, it would decrease. 

 In summary, the main purpose of this work is to provide a first proof of principle that, while 
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the pair creation process creates entangled particles, it is not necessarily local (from the 

perspective of the created particles) and therefore can be manipulated via suitable external control 

fields that are placed far outside the creation zone, even at regions that are never visited by the 

created positrons.  The manipulation of the vacuum modes is not a new phenomenon in itself, for 

example, it was demonstrated that the spontaneous emission rate of atoms can be inhibited or 

enhanced [15] by placing the atom in a cavity [16].   

 For conceptual simplicity, our phenomenon was illustrated for a spatially confined geometry.  

In order to show that the effects can be in principle measured experimentally, we have examined 

numerically a situation where 30KeV x-ray lasers [19] were modeled by inhomogeneous external 

fields.  The tightly focused radius was of the order of 0.1 nm while the distance between the two 

fields can be several nanometers.  In this setup, a stationary creation rate, which can be two times 

larger for some specific energies due to the control field, is established after several 

femtoseconds.  For practical reasons, a high frequency laser is recommended in this setup, while a 

low frequency laser (for which the analytical model was provided) could be less feasible.  On the 

other hand, the inclusion of the temporal structure of the x-ray field would also trigger pair 

creation due to multiphoton processes, for which the dressing of the vacuum might be more 

complicated in realistic laboratory conditions. 
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