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We use the strong intrinsic non-linearity of a microwave superconducting qubit with a 4 GHz tran-
sition frequency to directly detect and control the energy of a micro-mechanical oscillator vibrating
at 25 MHz. The qubit and the oscillator are coupled electrostatically at a rate of approximately
2π×22 MHz. In this far off-resonant regime, the qubit frequency is shifted by 0.52 MHz per oscil-
lator phonon, or about 14% of the 3.7 MHz qubit linewidth. The qubit behaves as a vibrational
energy detector and from its lineshape we extract the phonon number distribution of the oscillator.
We manipulate this distribution by driving number state sensitive sideband transitions and creating
profoundly non-thermal states. Finally, by driving the lower frequency sideband transition, we cool
the oscillator and increase its ground state population up to 0.48±0.13, close to a factor of 8 above
its value at thermal equilibrium. These results demonstrate a new class of electromechanics exper-
iments that are a promising strategy for quantum non-demolition measurements and non-classical
state preparation.

The ability to bring man-made acoustical or mechani-
cal structures into the quantum regime has been demon-
strated in a variety of devices, from micro-mechanical
oscillators in opto- and electro-mechanics experiments
[1, 2], to acoustic resonators in circuit Quantum Elec-
trodynamics (cQED) experiments [3]. Mechanical oscil-
lators are generally very linear harmonic oscillators at the
quantum scale and to achieve arbitrary quantum control,
one needs an extrinsic non-linearity [4]. Performing non-
linear detection is also a way to enable quantum non-
demolition measurement by measuring energy instead of
position or momentum [5–7]. One strategy is to use the
Josephson junction used in superconducting microwave
circuits. It provides a dissipationless strong non-linearity
and has enabled the demonstration of landmark results in
quantum science from the preparation of arbitrary quan-
tum states of microwave light [8, 9] to the demonstra-
tion of early-stage quantum computers [10, 11]. By us-
ing piezoelectric materials, resonant coupling between su-
perconducting qubits and high frequency (GHz) acoustic
wave resonators has been demonstrated [3, 12].

This resonant approach is however restricted to a small
class of acoustic oscillators and loses many of the advan-
tages of the micro-mechanical oscillators used in opto-
and electro-mechanics experiments [13]. In these exper-
iments, a wide variety of techniques have been devel-
oped and have made these mass-on-a-spring-like oscil-
lators very versatile. They can be used to interface oth-
erwise incompatile quantum systems such as supercon-
ducting circuits and optical light [14], they are extraor-
dinarily sensitive detectors of force and strain [15, 16] and
they can be engineered to have extremely long lifetimes
[17]. However these low frequency mechanical oscillators
have proven to be more challenging to couple to super-
conducting qubits. One strategy is to use a linear cav-
ity to transfer nonclassical microwave fields created by a
qubit to a mechanical oscillator by using the radiation

pressure interaction [18, 19]. This approach has to battle
the incompatibility of large microwave pump powers with
qubits as well as the loss during the state propagation or
transfer. Low frequency mechanical oscillators have also
been directly coupled to qubits [20, 21], but so far the in-
teraction strengths have been too weak to achieve control
or detection of motion at the scale of few phonons.
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FIG. 1. (a) False-colored scanning electron micrograph (at
an angle) of the micro-mechanical oscillator (blue) suspended
above two electrodes and forming a vacuum gap capacitor.
(b) Top view of the device showing the superconducting qubit
electrodes (yellow and green), shunted by two Josephson junc-
tions (JJ) in parallel. The dc bias line imposes a voltage Vd

onto the oscillator plate. (c) Equivalent circuit of the device.

In this Letter, we directly couple a superconducting
qubit to a mechanical oscillator, achieving an ultrastrong
interaction of gm ≈ 2π × 22 MHz, comparable to the os-
cillator’s resonance frequency ωm ≈ 2π × 25 MHz. Sim-
ilar to quadratic optomechanics proposals [6], we detect
the energy of the oscillator instead of its position. More
precisely, a mechanical ac-Stark effect shifts the qubit
frequency by 0.52 MHz per oscillator phonon, or about
14% of the 3.7 MHz qubit linewidth. The qubit line-
shape therefore encodes the phonon number statistics,
which we extract using a Bayesian-based algorithm. The
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qubit-oscillator system also exhibits blue and red side-
band transitions, analogous to those found in optome-
chanics and trapped ions systems [13, 22], at the sum
(blue) and difference (red) of frequencies. In contrast
to optomechanics, the qubit non-linearity makes these
sideband transitions number state dependent. Using this
property, we demonstrate control of populations in the
Fock space with a resolution of about 7 quanta. By driv-
ing the lower frequency sideband transition, we cool the
oscillator and increase its ground state population up to
0.48±0.13, close to a factor of 8 above its value at thermal
equilibrium.

Because our mechanical oscillator frequency is so low
compared to that of a qubit at a few GHz, we require a
qubit that couples statically to the oscillator. We achieve
this interaction by forcing electrostatic charge onto the
oscillator and using a Cooper-pair box qubit [23, 24],
which unlike a transmon, is sensitive to charge at low
frequency [25]. Our device is presented in Fig. 1(a) and
(b), and it can be mapped on the circuit diagram of Fig.
1(c). The mechanical oscillator is an aluminum drum-
head, similar to those used in previous electromechanics
experiments [1]. It is suspended over two separate alu-
minum electrodes and realizes a mechanically compliant
capacitor with each electrode. When the drum vibrates
in its first harmonic, the regions of the drumhead lo-
cated above the two bottom electrodes move with oppo-
site phases as depicted in Fig. 1(c). The two bottom elec-
trodes are connected through two Josephson junctions in
parallel, which hybridize the charge states of the two is-
lands to form a flux tunable charge qubit [23, 24]. We
operate this qubit at the charge degeneracy point. The
device is embedded in a far detuned co-planar waveguide
resonator such that the qubit can be readout and coher-
ently controlled using standard cQED techniques [26, 27].

Our ability to apply a large dc bias on the drum is
essential to the working principle of the device. When
such a voltage is applied, a static charge accumulates on
the capacitors plates C±

drum and this charge is forced to
move along with the mechanical motion. The motion of
this charge is equivalent to an ac voltage applied differen-
tially over the qubit electrodes and creates a Josephson
current going through the junctions at mechanical fre-
quency. Mechanical motion is thus transversely coupled
to the qubit transition, realizing a Rabi Hamiltonian with
a coupling strength gm ≈ 2π × 3.7 MHz/V. Most of the
data we present was obtained with Vd = 6 V.

At zero bias voltage, the motion of the drum only mod-
ulates the capacitances of the qubit electrodes and the
qubit-mechanics coupling is negligible. We can use this
fact to characterize the bare qubit. Figure 2(a) shows a
qubit spectroscopy at Vd = 0 V, obtained by measuring
the qubit excited state probability Pe as a function of the
frequency of a weak microwave drive. Fitting this to a
Lorentzian, we obtain a FWHM of about Γ∗

2 ≈ 2π × 3.7
MHz, consistent with coherent control data in the time
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FIG. 2. (a) Low power spectroscopy of the qubit decoupled
from the mechanical oscillator, at Vd = 0 V. The solid line is a
Lorentzian fit indicating an intrinsic qubit linewidth of about
3.7 MHz. (b) Principle of the ac-Stark shift. The bare qubit
resonance is shifted by a fraction of its linewidth for each
number state. For a mechanical thermal state, the dressed
qubit lineshape is the sum over all number states weighted
by their population. (c) Spectroscopy of the qubit coupled
to the mechanical oscillator (at thermal equilibrium). Inset :
phonon populations extracted with a fit assuming a thermal
distribution (dashed) or with a Bayesian-based deconvolution
algorithm (full line).

domain [27].
When a 6 V dc bias is applied on the drum, the qubit

and the oscillator have a very large coupling strength
(gm/ωm ≈ 0.9). Nevertheless, this device is in a regime
where the mechanical frequency is more than two or-
ders of magnitude smaller than the qubit frequency. In
this limit, the two systems do not exchange energy spon-
tanously but instead they shift each other’s resonance
frequency according to the effective Hamiltonian [26, 28–
30]

H/~ = ωma†a+
1

2

(

ωq + 2χma†a
)

σz (1)

where a is the phonon annihilation operator, σz is the
qubit Pauli operator, ωq is the Lamb-shifted qubit fre-
quency and χm ≈ 2g2m/ωq includes the Bloch-Siegert
shift [30–32]. We determine 2χm ≈ 2π×0.52 MHz by
measuring how the mechanical oscillator frequency is dis-
persively shifted by the qubit in its ground state [27].
Equation 1 shows how the qubit transition frequency
is dressed by each phonon in the oscillator, ω̃q(n) =
ωq + 2χmn. This effect is sketched in Fig. 2(b). A
figure of merit of our device is given by the ratio between
the single phonon Stark shift and the qubit FWHM,
2χm/Γ∗

2 ≈ 0.14. In terms of resolution, this means that
the sum of two phonon number states different by 7 or
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FIG. 3. (a) Energy level diagram for ground and excited states of the qubit (g and e), dressed by phonon numbers n−1, n and
n + 1, showing the number-sensitive qubit transition ω̃q(n) as well as the number-sensitive blue and red sideband transitions
ωB(R)(n). (b) For a blue sideband drive centered around ndrive, blue sideband transitions at neighboring number states are
also driven, at a smaller rate. (c) Qubit spectroscopy after a blue sideband drive centered at a few different ndrive. Dots are
raw data, full lines are qubit lineshapes expected from the reconstructed phonon number distribution. Vertical black arrows
indicate the position of ndrive mapped onto the spectroscopic frequency axis (that is ω = ωq + 2χmndrive). (d) Reconstructed
experimental phonon populations (full lines) and master equation simulation (dashed lines) based on independently measured
parameters. The orange curves, corresponding to the reconstructed populations of the thermal state, are shown for reference.
Confidence intervals on the reconstruction (lighter shade) are obtain from a non parametric bootstrap [27]. Gray areas show
where populations have been moved by the sideband drive.

more will yield a qubit spectrum with two resolved peaks.
As shown below, performing fits or deconvolutions allows
us to go beyond this limit.
In order to determine the phonon number distribution

from the ac-Stark shift, we make an approximation that
treats the qubit lineshape dressed by the mechanical mo-
tion as [33]

P dressed
e (ω) =

∑

n

P (n)P bare
e (ω − 2χmn) (2)

where P bare
e (ω) is the response of the bare qubit to a

spectroscopic drive at the frequency ω/2π. The validity
of this approximation depends on three conditions which
are well satified for phonon numbers up ≈ 50 [27, 34].
This holds us from being quantitative for populations at
larger phonon numbers with equation 2, but as discussed
below, it allows us to make qualitative statements about
arbitrary distributions.
The measured spectroscopy of the qubit dressed by

the mechanical oscillator at thermal equilibrium with
our dilution refrigerator is shown in Fig. 2(c). The
asymmetry in the lineshape reflects the thermal dis-
tribution of the oscillator, with a tail going to high
Fock numbers. Assuming that the mechanical oscilla-
tor number state distribution is that of a thermal state,
P (n) = nn

th/ (nth + 1)n+1, we can fit this lineshape us-
ing equation 2 with nth as a fit parameter and we ex-

tract nth ≈ 15 (about 18 mK) [27]. This procedure only
works for mechanical states for which we know the func-
tional form of P (n) (thermal states, coherent states, dis-
placed thermal states, etc). In order to be more gen-
eral, we use an adapted version of the Bayesian-based
Lucy-Richardson algorithm to invert equation 2 [27, 35].
The extracted P (n) distribution is shown in Fig. 2(c),
along with the distribution obtained assuming a thermal
state. The reconstructed populations are plotted along
with confidence intervals obtained from a non-parametric
bootstrap [36]. The small bump in the data, just above
3.85 GHz, is a manifestation of a deviation from the small
number of phonons approximation, which makes equa-
tion 2 inexact.
We now use the qubit to control the energy distribution

of the mechanical oscillator by driving sideband transi-
tions. Similar to opto- or electro-mechanics systems, we
can drive a red or blue sideband transition. As depicted
in Fig. 3(a), a red sideband transition excites the qubit
while removing a phonon from the oscillator. Conversely
a blue sideband transition excites the qubit and adds a
phonon to the oscillator. The crucial difference from that
of conventional linear opto-mechanics is the number-state
dependence of these transitions. The blue (red) transi-
tion frequencies are given by :

ωB(R)(n) = ωq ± ωm + 2χm

(

n±
1

2

)

(3)
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Thus driving a blue sideband transition at frequency
ωB (ndrive) only drives a few transitions at neighboring
number states. The characteristic number of transitions
being driven around ndrive is given by Γ∗

2/2χm [27], that
is on the order of 7 transitions. Because these are two-
photon transitions, we drive these sidebands with two
tones: a lower frequency (260 MHz) dither applied to
the Cooper-pair box gate, and a microwave tone detuned
from the transition by the dither frequency [27], as pro-
posed in Ref. [37].

Figure 3(c) shows qubit spectroscopies taken after a
microwave pulse at a few different blue sideband frequen-
cies, corresponding to transitions ranging from ndrive ≈ 1
to 42. When driving close to the ground state (ndrive ≈

1), the dressed qubit resonance is essentially shifted to
slightly higher frequency. However, driving at higher
numbers qualitatively changes the qubit lineshape, show-
ing a first peak around the bare qubit frequency and a
separate peak at higher frequency. This lineshape reveals
how the phonon populations are moved into distinct re-
gions of the Fock space. The associated reconstructed
phonon distributions P (n) are given in Fig. 3(d). As
highlighted by the shaded areas, these distribution show
how our blue sideband pulse takes phonon populations
around ndrive (or below), and transfers them to higher
numbers. We can compare the reconstructed experi-
mental phonon distributions with a semi-classical master
equation simulation (dashed lines in Fig. 3(d)). In these
simulations, the qubit decoherence rates, the mechanical
damping rate, the mechanical bath temperature and the
sideband rates are determined from independent mea-
surements [27]. We attribute the difference between ex-
periment and simulation mainly to deviations from equa-
tion 2 that yield inaccurate reconstructions. Neverthe-
less, the qualitative agreement between simulation and
experimental data demonstrates how the qubit can be
used to control the phonon population in the drum with
a resolution of a few phonons and up to a relatively large
number of phonons.

Finally, Fig. 4 shows how we use the qubit to cool
thermal motion down with a red sideband drive. Cool-
ing macroscopic mechanical motion with a superconduct-
ing qubit has been extensively investigated theoretically
[38–42], but to our knowledge this is the first experi-
mental demonstration of such a scheme. After a 150 µs
red sideband pulse at ndrive ≈ 8, the population around
n = 8 has been emptied and transfered to Fock numbers
n ≤ 2 (red data in Fig. 4). At this time, population at
higher energy has not yet been affected because it is not
in the number sensitive window where the sideband drive
is acting. Leaving the sideband drive on for a longer time,
comparable to the mechanical damping time of about 1.7
ms, this higher number population slowly decays down
into the range where the sideband drive is effective. This
population is then also transfered to low phonon number
and further increases the population around the mechan-
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FIG. 4. Spectroscopy of the qubit after a red sideband drive of
150 µs (dark red) and 1.5 ms (black), centered around ndrive ≈

8. Dots are raw data, full lines are qubit lineshapes expected
from the reconstructed phonon number distribution. Inset
: reconstructed experimental phonon populations (log scale,
with bootstrap confidence intervals in lighter shades). The
dotted line is the distribution of a fit to a thermal state. The
horizontal black arrow indicates the ground state population
of about 0.48 (see text).

ical ground state to reach P (0) ≈ 0.48±0.13 (black data).
The uncertainty on P (0) is here dominated by our un-
certainty in the bare qubit frequency [27] (uncertainty
bands in Fig. 4 do not include this systematic effect).
After this long pulse, the narrowed qubit lineshape is
a direct signature of the decreased phonon variance as-
sociated with lower mechanical temperature. For longer
duration red-sideband pulses, the drive begins to trivially
heat the oscillator rather than cool it. Nevertheless, the
demonstrated performance should be sufficient to prepare
sub-Poissonian states at large average phonon number.

Looking forward, a natural next step would be to
increase χm by increasing Vd. The maximum voltage
we could apply in this study (6 V) was limited by
our ability to readout the qubit through its dispersive
coupling to the microwave resonator. For reasons we
do not understand the readout contrast diminished and
became bystable with increasing voltage. Understanding
and solving this problem would allow us to turn up
Vd, in principle up to 21 V (limited by electrostatic
instability). The single phonon Stark shift 2χm would
then be approximately 2π×10 MHz, exceeding the bare
qubit linewidth and reaching the strong dispersive limit
[43]. In addition, the ultra-strong qubit-mechanics
interaction demonstrated here could also be combined
with the microwave cavity to enter a rich three-body
interaction regime [44]. This could be used to prepare
non-classical states such as mechanical cat states and
tripartite entangled states involving the microwave
cavity, the qubit and the mechanical oscillator.
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