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The error in estimating the separation of a pair of incoherent sources from radiation emitted by
them and subsequently captured by an imager is fundamentally bounded below by the inverse of
the corresponding quantum Fisher information (QFI) matrix. We calculate the QFI for estimating
the full three-dimensional (3D) pair separation vector, extending previous work on pair separation
in one and two dimensions. We also show that the pair-separation QFI is, in fact, identical to
source localization QFI, which underscores the fundamental importance of photon-state localization
in determining the ultimate estimation-theoretic bound for both problems. We also propose general
coherent-projection bases that can attain the QFI in two special cases. We present simulations of
an approximate experimental realization of such quantum limited pair superresolution using the
Zernike basis, confirming the achievability of the QFI bounds.

Rayleigh’s pair-resolution criterion[1] is routinely su-
perseded by modern imaging systems. An approach that
entirely circumvents it employs PSF fitting and localiza-
tion of single fluorescent molecules by selective excitation
in which two closeby molecules are rarely, if ever, excited
simultaneously [2–4] in each frame, thus allowing a frame-
by-frame construction of a composite, superresolved im-
age of a collection of densely packed molecules. Another,
more direct approach uses computational image process-
ing with a priori constraints under sufficiently high pixel
brightness [5–10].
The covariance matrix, Vθ[O, θ̌], for the unbiased esti-

mator, θ̌, of a set of quantities, θ
def
= {θp | p = 1, . . . , P},

parameterizing the density operator, ρ̂θ, of a system is
bounded below by the inverse of the quantum Fisher
information (QFI) matrix [11–15], namely the quantum
Cramér-Rao bound (QCRB),

Vθ[O, θ̌] ≥ J−1
θ [O] ≥ H−1

θ , (1)

in which O = {Ô(x) | x ∈ X} defines a positive-operator
valued measure (POVM) of non-negative operators de-
fined on a data set X and which sum to the identity
operator, Î. The classical FI matrix, Jθ[O], is defined
[16, 17] in terms of the probability distribution (PD) of
the POVM, PO(x; θ) = Tr [ρ̂θÔ(x)], as

Jθ[O] = EO

(

∇θ lnPO(x; θ)∇T
θ lnPO(x; θ)

)

, (2)

in which ∇θ lnP is a column vector representing the gra-
dient taken relative to θ, the superscript T denotes ma-
trix transpose, and EO the statistical expectation of its
argument over the PD. The inverse of the classical FI is
the classical Cramér-Rao lower bound (CRB).
Tsang et al. [18] proved that pair separation can

achieve QCRB in one dimension with classical wave-
front projections. This has been generalized to a thermal
source pair of the same average but otherwise indefinite
strength [19], to a source pair in an arbitrary quantum
state [20], to homodyne and heterodyne detection[21],
and to two dimensions [22], and experimentally verified

by a number of groups [23–26]. For an imager with a one
dimensional (1D) Gaussian point-spread function (PSF),
it is the Hermite Gaussian (HG) basis [18] that perfectly
achieves QCRB, which turns out to be independent of
the pair separation. By contrast, the conventional image-
based approach entails a quadratic dependence of FI on
the separation. This critical difference implies dramati-
cally different inverse-square vs. inverse-quartic power-
law scalings of the minimum photon number needed to
resolve the pair as a function of their separation using
these two approaches.
Here we treat the problem of estimating the full 3D

separation vector for a pair of incoherent, equally bright
point sources, when the pair centroid is known and an
imager with a circular aperture is used [27]. We first
calculate the 3 × 3 QFI matrix with respect to (w.r.t.)
the three components of the pair separation vector, and
show it to be diagonal and independent of the latter.
We also show that QFI is in fact the same as that for
localizing a single point emitter in 3D [28]. We then dis-
cuss projective-measurement protocols that can achieve
QCRB in two special cases of vanishing axial and lat-
eral separations. We finally present simulations of an ex-
perimental proposal to achieve quantum-limited 3D pair
separation.
A photon emitted by an incoherent pair of equally

bright point sources and passing through an imaging
aperture is described by the density operator,

ρ̂ =
1

2
(|K+〉〈K+|+ |K−〉〈K−|) , (3)

in which |K±〉 are pure one-photon states passing
through the aperture, corresponding to individual emis-
sions by the two sources located at 3D positions,
±(r⊥, rz), w.r.t. their centroid. The corresponding nor-
malized transverse and axial semi-separations, l⊥, lz, are
defined as

ℓ⊥ = r⊥/σ0, lz = rz/ζ0, (4)

where σ0 = λzO/R and ζ0 = λz2O/R
2 denote the charac-

teristic transverse and axial resolution scales [30] for an
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aperture of radius R, optical wavelength λ, and distance
zO from the aperture of the pair centroid, the latter taken
to be at the on-axis, in-focus position w.r.t. the aperture.
The coordinate representations, 〈s|K±〉, of these states

are the image-plane amplitude PSFs. Their momentum-
space representations are the wavefunctions in the exit
pupil of the imager [30],

〈u|K±〉 = exp(±iφ0)P (u) exp[∓i(2πl⊥ ·u+πlzu
2)], (5)

in which the linear and quadratic phases of each wave-
function represent, respectively, its tilt and curvature due
to the off-axis, defocused location of the corresponding
source, and P (u) denotes a general aperture function.
For a clear aperture, P (u) is simply 1/

√
π times its indi-

cator function, corresponding to the Airy PSF, while in
its Gaussian form, it yields the Gaussian PSF. More gen-
erally, P (u) need only obey the normalization condition,

∫

d2u |P (u)|2 = 1, (6)

that follows from requiring 〈K±|K±〉 = 1.
The two non-zero eigenvalues, e±, and the associated

orthonormal eigenstates, |e±〉, of ρ̂ given by Eq. (3) are

e± = (1 ±∆)/2; |e±〉 = [2(1±∆)]−1/2 (|K+〉 ± |K−〉) ,
(7)

where ∆ is the inner product, ∆ = 〈K−|K+〉, which we
render real and positive by a proper choice of the phase
constant, φ0.
The QFI matrix has elements, ReHµν , where Re de-

notes the real part and Hµν
def
= Tr (ρ̂L̂µL̂ν) can be ex-

pressed [31] in the eigenbasis of ρ̂ as

Hµν =
∑

i∈R

∑

j

4ei
(ei + ej)2

〈ei|∂µρ̂|ej〉〈ej |∂ν ρ̂|ei〉, (8)

in which L̂µ is the symmetric logarithmic derivative
(SLD) of ρ̂ w.r.t. parameter lµ, for brevity we denote
∂ρ̂/∂lµ as ∂µρ̂, and R denotes the set of values of an
index for the eigenstates that span the range space of ρ̂.
By decomposing the j sum into a sum over the range

space of ρ̂ and another over its null space, j /∈ R for
which ej = 0, we may evaluate the latter sum via the
completeness relation,

∑

j /∈R

|ej〉〈ej | = Î −
∑

j∈R

|ej〉〈ej |.

We may thus express Hµν in Eq. (8) as

Hµν =
∑

i∈R

4

ei
〈ei|∂µρ̂∂ν ρ̂|ei〉

+
∑

i∈R

∑

j∈R

[

4ei

(ei + ej)
2 − 4

ei

]

〈ei|∂µρ̂|ej〉〈ej |∂ν ρ̂|ei〉.

(9)

For the present problem for whichR = {+,−}, we may
simplify the derivatives in Eq. (9) by means of the eigen-
vector identity, ∂µ[(ρ̂ − eiÎ)|ei〉] = 0, and thus express
Hµν as [31]

Hµν =
∑

i=±

1

ei
∂µei∂νei + 4

∑

i=±

1

ei
(∂µ〈ei|)(ρ̂− eiÎ)

2∂ν |ei〉

+ 4∆2
∑

i6=j

(

1

ei
− ei

)

〈ei|∂µ|ej〉〈ej |∂ν |ei〉, (10)

in which we used the identities, e+ + e− = 1 and
e+ − e− = ∆. The first sum in expression (10) may
be regarded as the classical part of QFI, the real part
of the second sum the contribution of quantum fluctu-
ations of the photon state to QFI, and the real part of
the final sum an additional contribution from the pair
cross-coherence, ∆ 6= 0.
By evaluating the various state derivatives in expres-

sion (10), we may reduce it further [31] to the form,

Hµν = 4 [(∂µ〈K+|)∂ν |K+〉+ 〈K+|∂µ|K+〉〈K+|∂ν |K+〉] .
(11)

By using expression (5) for 〈u|K+〉, we may evaluate
Eq. (11) in terms of the gradient of the phase function,

Ψ(u; ℓ) = 2πl⊥ · u+ πlzu
2, (12)

independently of φ0 as

Hµν = 4 [〈∂µΨ∂νΨ〉 − 〈∂µΨ〉〈∂νΨ〉] , (13)

where angular brackets now denote averages over the
modulus squared aperture function, |P (u)|2.
Form (13) of QFI underscores the fundamental role of

the correlations of the wavefront gradient in the aperture
in controlling the error of estimation of the pair separa-
tion. For a clear circular aperture, to which we restrict
attention in the rest of the paper and for which |P (u)|2 is
1/π times its indicator function, simple integrations yield
the following averages:

〈ui〉 = 0; 〈uiuj〉 =
δij
4
; 〈u2〉 = 1

2
; 〈u4〉 = 1

3
; i, j = x, y,

(14)
and thus the following purely diagonal form of the per-
photon 3D QFI matrix:

H(lx, ly, lz) =







4π2 0 0
0 4π2 0

0 0
π2

3






. (15)

The reality and diagonal character of Hµν provide neces-
sary and sufficient achievability conditions for the simul-
taneous estimation of the three separation coordinates in
the asymptotic limit, with collective measurements in-
volving an arbitrarily large number of copies of the state
[32]. For special cases, however, we will presently show
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that QCRB can be realized without the need for collec-
tive measurements.

We next show that QFI for localizing a single source,
say the one located at +(l⊥, lz), is identical to that
we have just obtained for 3D pair separation. For this
problem, only the middle term in expression (10) con-
tributes, since ρ̂ = |K+〉〈K+| has a single fixed non-zero
eigenvalue, e+ = 1, with eigenstate |e+〉 = |K+〉, and
(ρ̂ − Î)2 = Î − |K+〉〈K+|. In view of these relations
and normalization, 〈K+|K+〉 = 1, which requires that
(∂µ〈K+|)|K+〉 = −〈K+|∂µ|K+〉, the resulting QFI be-
comes identical to Eq. (11) for QFI for source-pair sep-
aration. The equality of the QFI matrices for source
localization and pair separation shows that the general
problem is one of estimating the photon state, indepen-
dent of the nature of its emitter.

The 3D source-localization QFI has been calculated
directly from the definition of SLD of the density opera-
tor for a pure state in Ref. [28], but unlike that problem
estimating the separation between incoherent sources re-
quires use of a mixed state and thus the more general ex-
pression (9) for QFI. For two incoherent sources, Eq. (9)
simplifies to Eq. (10) from which one can go further and
consider QFI limited error bounds on joint localization
and separation of the two [29].

QCRB is achievable via orthonormal wavefront pro-
jections in two special cases. For sources in the same
transverse plane, for which lz = 0, consider an orthonor-
mal basis, A = {Amn(u)|m,n ∈ Z}, of states in the
aperture plane obeying the condition, |〈K+|Amn〉| =
|〈K−|Amn〉|, ∀m,n. Since 〈u|K+〉 = 〈u|K−〉∗, this con-

dition is met by any real basis. The probability P
(A)
mn ,

which is equal to 〈Amn|ρ̂|Amn〉, may then be written as

P
(A)
mn = |〈K+|Amn〉|2, from which follow the FI matrix

elements,

Jµν [A] =
∑

m,n

∂µP
(A)
mn ∂νP

(A)
mn

P
(A)
mn

=4
∑

m,n

∂µ|〈Amn|K+〉| ∂ν |〈Amn|K+〉|. (16)

If we assume further that the phases of 〈K+|Amn〉 are
independent of l⊥, then Eq. (16) simplifies to

Jµν [A] =4
∑

m,n

(∂µ〈K+|)|Amn〉〈Amn|∂ν |K+〉

=4(∂µ〈K+|)∂ν |K+〉, (17)

with the second equality following from the completeness
relation,

∑

m,n |Amn〉〈Amn| = Î. For µ, ν = x, y, Jµν [A]
matches QFI in expression (11) since for the choice,
φ0 = 0, we make to render the phases of 〈K+|Amn〉 inde-
pendent of l⊥, 〈K+|∂µ|K+〉, vanishes identically for any
inversion symmetric aperture.

The orthonormal sine-cosine Fourier basis states in po-
lar coordinates, (u, φ),

CCmn(u) =
√

cmcn
π cos(2πmu2) cosnφ, m, n = 0, 1, . . . ;

CSmn(u) =
√

cmcn
π cos(2πmu2) sinnφ, m = 0, 1, . . . ,

n = 1, 2, . . . ;
SCmn(u) =

√

cmcn
π sin(2πmu2) cosnφ, m = 1, 2, . . . ,

n = 0, 1, . . .
SSmn(u) =

√

cmcn
π sin(2πmu2) sinnφ, m, n = 1, 2, . . . ;

(18)
with cn = 2−δn0, constitute one such basis that achieves
QFI for the case of pure transverse pair separation as
their overlap integrals with the photon wavefront of each
source can be readily shown [31] to have phases that are
independent of that separation.
For the source pair being on the optical axis, i.e., l⊥ =

0, only the n = 0 subset of the sine-cosine basis, as we
need no angular localization, achieves QCRB w.r.t. lz, as
we show next. The relevant probability amplitudes are

〈Am0|K+〉 =
1√
π

∫ 1

0

du u exp(−iπlzu
2)Am0(u);

=
1

2
√
π
exp

(

−iπ
lz
2

)∫ 1/2

−1/2

dv cos(πlzv)Am0(
√

v + 1/2),

(19)

with A = CC, SC. We used the variable transformation,
v = u2− 1/2, followed by a symmetrization of the result-
ing integrand to reach the second equality in Eq. (19) that
involves a purely real integral. In view of the form (19),
we have |〈Am0|K+〉| = exp(iπlz/2)〈Am0|K+〉, which al-
lows us, analogously to Eq. (16) with µ = ν = z, to
express FI w.r.t. lz as

Jzz[A] =4
∑

m

∣

∣∂z|〈Am0|K+〉|
∣

∣

2

=4
∑

m

[

∂z(〈K+|)|Am0〉 − i(π/2)〈K+|Am0〉
]

×
[

〈Am0|∂z |K+〉+ i(π/2)〈Am0|K+〉
]

=4
[

∂z(〈K+|)|∂z |K+〉 − i(π/2)〈K+|∂z|K+〉
+ i(π/2)(∂z|K+)|K+〉+ (π/2)2

]

=4
[

∂z(〈K+|)|∂z |K+〉 − π2/4
]

=4
[

∂z(〈K+|)|∂z |K+〉+ 〈K+|∂z |K+〉2
]

(20)

in which we used the completeness of the |Am0〉 states
over the aperture for φ-invariant wavefunctions like
〈u|K+〉 characteristic of an axially separated source
pair and relations, 〈K+|∂z |K+〉 = (∂z〈K+|)|K+〉∗ =
−iπ〈u2〉 = −iπ/2, to derive the various expressions.
We see from expression (11) that the {Am0|A =
CC, SC, m = 0, 1, . . .} basis achieves QFI w.r.t. lz for
an axially separated source pair. More generally, any

real basis of orthonormal projections, {|Bm〉}, for which
the equality, |〈Bm|K+〉| = |〈Bm|K−〉|, certainly holds,
will achieve QFI.
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Projections that are well matched to the linear tilt and
quadratic defocus parts of the aperture phase function,
Ψ(u), given by Eq. (12), can achieve full 3D QFI in the
limit of small separations, l⊥, lz << 1. One need merely
use a few such projections, as noted in Ref. [18]), to attain
quantum-limited estimation variance in this limit. In the
3D case, we consider aperture-plane wavefront projec-
tions into low-order orthonormal Zernike basis functions
[33], {Zn, n = 1, 2, . . . , N}, with N ∼ 4 − 7. Here we
only discuss projections into the first four Zernikes,

Z1 =
1√
π
, Z2 =

2√
π
u cosφ, Z3 =

2√
π
u sinφ,

Z4 =

√

3

π
(2u2 − 1). (21)

The second and third of these correlate perfectly, respec-
tively, with the tilt phases corresponding to the x and y
components of the transverse separation vector, l⊥, and
may thus be regarded as matched filters [34] for the lat-
ter. By contrast, the first and last are only partially
matched to the quadratic pupil phase corresponding to
the axial separation, lz, with their probabilities remain-
ing finite when lz → 0. The imperfect match of the latter
with a single projection mode causes striking differences,
as we shall see, in the estimation error bounds that are
achievable in the limit of vanishing separation.

We now prove these assertions by evaluating [31]
the mode-projection probabilities, Pn = 〈Zn|ρ̂|Zn〉, for
l⊥, lz << 1,

Pn =















1− π2(l2⊥ + l2z/12) +O(l4⊥, l
4
z) n = 1

π2l2x[1 +O(l2⊥, l
2
z)] n = 2

π2l2y[1 +O(l2⊥, l
2
z)] n = 3

π2l2z/12 +O(l4⊥, l
2
zl

2
⊥, l

4
z) n = 4

(22)

Since (∂xP2)
2/P2 = (∂yP3)

2/P3 = 4π2[1 +O(l2z)], we see
that each reaches QFI in the limit lz → 0. By contrast,
the Z4 projection contributes to FI w.r.t. lz the term,
(∂zP4)

2/P4, which is of form (π2/3){l2z/[l2z(1 + O(l2⊥)) +
O(l4⊥)]} and vanishes in the limit lz → 0 if l⊥ 6= 0. The
same form implies, however, that for l⊥ << 1, FI as
a function of lz rises to a value comparable to the QFI,
π2/3, over an interval of order l2⊥. All other contributions
to the various matrix elements of FI are negligibly small
in the limit of vanishing ℓ, so the inverse of the diagonal
elements of FI determine the corresponding CRBs to the
most significant order in ℓ.

One can perform wavefront projections by digital
holography [23]. Specifically, consider encoding the sum,
∑N

n=1 Zn(u) cos(qn ·u), as the distribution of the ampli-
tude transmittance of a plate, with negative values in
the sum realized by a π phase retardation. Let the imag-
ing wavefront, which is an incoherent superposition of
the photon wavefunctions 〈u|K±〉 and carries M pho-
tons, be incident on such a plate that is placed in the

aperture (or a conjugate plane thereof), and then opti-
cally focused on a sensor. The M photons will divide
into N pairs of oppositely located spots, with the nth
pair of spots corresponding to an obliquely propagating
wave pair that carries the Zn projection of the incident
wavefront along the spherical-angle pair, (θn,±φn), with
θn = sin−1(qn/k), φn = tan−1(qny/qnx). The numbers
of photons detected at the central pixels of the spots
taken pairwise furnish estimates of the probabilities of
the wavefront being in the corresponding modes. The
remaining photons that are not detected provide an esti-
mate of the wavefront being in the remaining states of a
complete basis of which the subset, {Zn, n = 1, . . . , N},
defines the observed states. The probability of detect-
ing m1, . . . ,mN photons in the N projective channels is
given by the multinomial (MN) distribution [31],

Prob(m̄, {mn}|{Pn}) = M !
P̄ m̄

m̄!

N
∏

n=1

(Pn)
mn

mn!
, (23)

in which m̄ = M − ∑N
n=1 mn and P̄ = 1 − ∑N

n=1 Pn

are, respectively, the number and probability of unde-
tected photons. Expressing the Pn in terms of the separa-
tion coordinates, lx, ly, lz, we performed their maximum-
likelihood (ML) estimation by numerically minimizing
− lnProb over those coordinates using Matlab’s fmin-

unc minimizer, which we started with an initial guess of
lx = ly = lz = 1/4, for a number of separations, 20,000
frames of noisy data, each with M = 106 photons and
generated using Matlab’s mnrnd code.
We plot in Fig. 1 the per-photon CRBs w.r.t. lx (top

panels) and ly (bottom panels) for two different values of
their axial separation, lz = 0.025 (left panels) and 0.25
(right panels). For each plot, we considered two different
values, 0.025 and 0.25, of the other transverse coordinate,
shown via the two different curves in each figure. Note
that CRB w.r.t. each transverse-separation coordinate
increases with increasing value of the other coordinate
due to a cross-talk between the two transverse coordi-
nates. Changing the longitudinal separation, however,
has a less pronounced effect on those curves. As the pair
separation increases, using only the first four Zernikes
is insufficient to estimate l⊥, which accounts in part for
the rising CRB curves.The discrete points identified by
marker symbols are the results of the sample-based vari-
ance (per photon) of the ML estimate of the separation
coordinates that we obtained in our numerical simula-
tions. Note that the results of simulation are consistently
lower than the corresponding CRB curves, which is most
discernible in the left panels (lz = 0.025). This is be-
cause the ML estimates of the separation coordinates are
biased, particularly that for lz, and standard CRBs do
not provide the correct lower bounds without including
bias-gradient based modifications [16, 17].
In Fig. 2 we plot the per-photon CRBs w.r.t. lz for

four different values of l⊥. We observe divergent behav-
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FIG. 1. Plots of CRBs w.r.t. lx for ly = 0.025 (lower curve)
and ly = 0.25 (upper curve) and for lz = 0.025 (left panels)
and lz = 0.25 (right panels). The roles of lx and ly are inter-
changed in the bottom panels. Estimation variances obtained
from simulation are shown by different marker symbols.

ior as lz approaches zero, corresponding to the vanishing
of Jzz[Z] whenver l⊥ 6= 0 that we noted earlier. This
behavior is quite in contrast with the rather muted de-
pendence on lz which we observed in Fig. 1 for the CRBs
w.r.t. l⊥. The cross-talk between the uncertainties in
simultaneously estimating the three pair-separation co-
ordinates, which is inherently present in the small set of
Zernike projections, increases the CRB for lz estimation
as l⊥ increases. The simulated values of the variance of
the estimator of lz, indicated by marker symbols, agree
well with the theoretical CRB values.

This Letter has treated the fundamental error in esti-
mating the full 3D separation vector for a source pair by
calculating the corresponding QFI and proposing specific
projection bases for which QFI is attainable. Simulations
using the Zernike basis confirm our theoretical assertions.
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