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Constructing a large scale ion trap quantum processor will require entangling gate operations that
are robust in the presence of noise and experimental imperfection. We experimentally demonstrate
how a new type of Mølmer-Sørensen gate protects against infidelity caused by heating of the motional
mode used during the gate. Furthermore, we show how the same technique simultaneously provides
significant protection against slow fluctuations and mis-sets in the secular frequency. Since this
parameter sensitivity is worsened in cases where the ions are not ground state cooled, our method
provides a path towards relaxing ion cooling requirements in practical realisations of quantum
computing and simulation.

Building a quantum processor capable of solving some
of the most complex real-world problems will require
both a large number of qubits, and the ability to ac-
curately perform gate operations on these qubits. While
such gate operations have been demonstrated on pairs of
carefully controlled ions with high fidelity [1, 2], main-
taining such fidelities as systems scale towards a large
quantum computer will require more robust operations.
Many proposed trapped ion quantum processors will re-
quire large numbers of ions to be trapped close to the
surface of a microfabricated chip [3–6], which can cause
increased gate infidelities due to heating and dephasing
of the ions’ motion caused by voltage fluctuations in the
electrodes of the chip [7] - the heating rate scales unfor-
givingly with distance as approximately d−4 [8]. In addi-
tion, it is likely that there will be slowly changing varia-
tions in experimental parameters, differing both from po-
sition to position on the chip and drifting in time, which
will be difficult to fully characterise and correct for during
the operation of the processor. This problem is exacer-
bated when the initial mean excitation of the motional
mode, n̄, is higher. This could, for example, occur as a
result of heating during shuttling processes which form
a core part of a number of architectures for a large scale
quantum computer [3, 5]. A quantum processor thus re-
quires gate operations that provide low error rates not
just under ideal conditions but that are resilient enough
to be successfully implemented in realistic experimental
environments.

The two-qubit Mølmer-Sørensen (MS) gate is one of
a class of trapped ion gates that operate by state-
dependent coherent excitation and de-excitation of a mo-
tional mode of a pair of ions during the gate operation
[9–11], and this motional excitation can be represented
as a circular path in phase space. Sørensen and Mølmer
discussed how the effect of heating could be reduced by
performing multiple smaller circles in phase space [10].
While this is effective at reducing the impact of heating,
the gate time scales as the square root of the number of
loops. Hayes et al. experimentally demonstrated a sim-

ilar technique as a method of reducing the effect of a
‘symmetric’ detuning error, such as could be caused by
an incorrectly measured trap frequency [12].

Noise suppression can be effectively achieved with less
impact on the gate time by tracing out more complicated
paths in phase space [13–15]. Recent theoretical work
proposed a method whereby the infidelity due to heating
can be significantly reduced with smaller impact on gate
time than by just performing multiple smaller loops [13].
Here, we experimentally demonstrate this effect, using a
pair of trapped 171Yb+ ions. We then build upon this
result to show that these same paths also dramatically
increase the resilience of the gate to errors caused by
symmetric detuning errors. We demonstrate how this
resilience becomes particularly significant in the case of
the mode used for the gate not being cooled close to the
ground state.

By off-resonantly driving the red and blue motional
sidebands of a pair of ions coupled to a common motional
mode the MS Hamiltonian,

HMS =
~δ
4
Ŝx(â†eiδt + âe−iδt), (1)

can be realised, where Ŝx = σ̂x1 + σ̂x2 is the sum of the
σ̂x matrices for the two ions, â† and â are the motional
mode raising and lower operators respectively, and δ is
the magnitude of the detuning from the red and blue
sidebands. When the driving fields are applied for a time
τ = 2π/δ, the pair of ions undergo the unitary transfor-
mation

UMS = exp
[
i
π

4
σ̂x1σ̂x2

]
(2)

which can produce a maximally entangled state from an
initial product state.

In practice, there are a number of mechanisms by
which the fidelity of the MS gate will be reduced from
one. Here we consider two sources of infidelity: a dephas-
ing of the gate caused by heating of the motional mode
during the gate process, and an incorrect phase pickup
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and residual entanglement of the qubits with the mo-
tional mode caused by a symmetric detuning frequency
error. This symmetric detuning occurs as a result of the
magnitude of the gate detuning δ being set incorrectly
by the same amount for both ions, ∆, for instance due
to a drift in trap frequency.

If the total infidelity is small, the fidelity of the gate
can be expressed as a sum of independent infidelities
F = 1 − (Eh + E∆ + Eoth), where Eh is the infidelity
due to heating, E∆ the infidelity due to symmetric de-
tuning error, and Eoth is the sum of any other infidelities,
which we henceforth do not consider. Since the infideli-
ties are small we will consider the infidelities only to the
leading order in either heating rate or detuning error.
The errors due to non-zero heating rate and symmetric
detuning error are then

Eh =
π ˙̄n

δ
, E∆ =

(
3

4
+ n̄

)
π2

(
∆

δ

)2

(3)

respectively, where ˙̄n is the heating rate and ∆ is the error
in gate detuning (see Supplemental Material [16]). Note
that the error due to incorrect detuning is also dependent
on the mean excitation of the motional mode at the start
of the gate n̄ (we assume the phonon distribution to be
thermal) - if the ion is ‘hotter’ (larger n̄) at the start of
the gate operation, it becomes much more sensitive to
parameter errors.

Haddadfarshi et al. introduced a method to reduce the
effect of heating and dephasing of the motional mode
on the gate fidelity [13]. They considered a multi-tone
generalisation of the MS gate (MTMS), where instead
of driving each ion sideband with a single field, MTMS
gates use N fields or tones to drive each sideband at
detunings δj = jδ with {j = 1, ...N} as shown in figure
1(a), and each tone’s strength is given by coefficients cj .
The Hamiltonian thus becomes

HMS = ~δŜx
N∑
j=1

cj(â
†eijδt + âe−ijδt). (4)

The condition to produce a maximally entangling uni-
tary constrains the values of the coefficients cj to be∑N
j=1

c2j
j = 1

16 , which corresponds to a standard single

tone MS gate having a coefficient c1 = 1
4 .

The effect of any MS type Hamiltonian is to excite the
motion of different spin components, causing them to se-
lectively acquire a phase, before (ideally) returning them
to their initial motional state. This excitation can be
considered as a time varying displacement in a rotating
phase-space, and the effect of heating depends quadrat-
ically on the magnitude of this displacement during the
gate. Haddadfarshi et al. found that the best reduction
in the effect of heating of the mode over the course of the
gate is found when the average phase space displacement
is zero, and average squared phase space displacement is

FIG. 1. (a) Energy level diagram showing multi-tone gate
fields detuned from the correct gate detuning δ by ∆r and ∆b

for the red and blue sidebands respectively. MTMS gates pro-
vide protection against errors of the form ∆r = ∆b = ∆. (b)
Phase space trajectories for one (red), two (blue), and three
(green) tone gates. Unlike the single tone case, the average
displacement 〈α(t)〉 = 0 for two or more tones. In addition,
as the number of tones increases, 〈|α(t)|2〉 becomes smaller.
The effect of this reduction in squared displacement is to re-
duce adverse effect of heating on gate fidelity. (c) For a single
tone gate, a symmetric detuning error (δ/∆ = 0.05) results in
both incomplete loops in phase space, causing error due to the
residual entanglement between the spin and motional states
of the qubit, and incorrect phase accumulation. For the two
and three tone gates, the loops come much closer to comple-
tion (visually indistinguishable from closed loops), effectively
eliminating residual qubit-motion entanglement as a contri-
bution to the infidelity, and although not visually obvious,
the phase picked up also becomes closer to the ideal. Both of
these effects lead to a reduction in sensitivity to symmetric
detuning errors.

minimised over the course of the gate. This corresponds

to parameters where
∑N
k=1

ck
k = 0, and

∑N
k=1

|ck|2
k2 is

minimised (see Supplemental Material [16] for more de-
tail). The effect of using the MTMS gate on the phase-
space trajectories can be seen in figure 1(b).

For MTMS gates, the heating rate defining the infi-
delity is modified by a factor given by (see Supplemental
Material [16])

˙̄nMT = 8

 N∑
k=1

c2k
k2

+

(
N∑
k=1

ck
k

)2
 ˙̄n. (5)

The minimisation conditions mean that this can be un-
derstood as a smaller effective heating rate. For N =
{1, 2, 3}, then ˙̄nMT = {1, 1/3, 1/5.19} × ˙̄n respectively.

We show here that MTMS gates also protect against
errors due to an incorrect symmetric detuning. In this
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case, the MTMS Hamiltonian is modified to become

HMS = ~δŜx
N∑
j=1

cj(â
†ei(jδ+∆)t + âe−i(jδ+∆)t) (6)

By expanding the fidelity of the gate in powers of the
fractional symmetric detuning error, ∆/δ, we obtain the
same set of constraints on the coefficients, cj , as was
obtained when minimising the effect of motional deco-
herence, so the gate is protected against both sources of
infidelity (see Supplemental Material [16]).

The infidelity due to symmetric detuning error of the
optimised MTMS gates to leading order in ∆/δ is given
by

EMT
∆ ' 16π2

(
∆

δ

)2
 N∑
j=1

c2j
j2

2

(7)

=
1

36
π2

(
∆

δ

)2

' 0.028π2

(
∆

δ

)2

(N = 2)

(8)

=
39− 12

√
3

1936
π2

(
∆

δ

)2

' 0.0094π2

(
∆

δ

)2

(N = 3)

(9)

The sensitivity to ∆ is significantly reduced for two
and three tone gates compared with the standard MS
gate (eq. 3). The infidelity is also independent of the
initial distribution of motional states, unlike eq. 3.
This is because the effect of residual qubit-motional
entanglement on the fidelity is zero to this order of
∆/δ, the infidelity being completely due to the incorrect
phase being acquired during the gate. This may be of
particular interest when gates are combined with shut-
tling operations which induce heating [3, 5]. Figure 1(c)
shows gates with symmetric detuning error δ/∆ = 0.05.
The single tone gate produces an obviously incomplete
loop. For the MTMS gates, while the detuning produces
a rotation of the phase space paths, the two paths
appear indistinguishable from closed loops - the two
tone gate comes almost 70 times closer to completion
than the single tone, the three tone gate almost 360
times closer.

We demonstrate this technique experimentally using
a pair of 171Yb+ ions [20]. The hyperfine ground state
is driven using microwave and radiofrequency radiation,
and a magnetic field gradient of 23.6(3) T/m is gener-
ated using permanent magnets to enable the requisite
coupling between the internal spin and collective mo-
tional modes [21, 22]. The ions are decoupled from
magnetic field noise using a dressed state system [23–
25]. A pair of microwave fields for each ion couple
|2S1/2, F = 0〉 ≡ |0〉 with |2S1/2, F = 1,mF = −1〉 ≡
|−1〉 and |2S1/2, F = 1,mF = −1〉 ≡ |+1〉 and, in the

interaction picture, this gives three well protected states
including (|+1〉−|−1〉)/

√
2 ≡ |D〉. The pair of states |D〉

and |2S1/2, F = 1,mF = 0〉 ≡ |0′〉 gives a well protected
qubit with transition frequencies 11.0 MHz and 13.9 MHz
for each ion respectively and a coherence time of 500 ms.

A maximally entangled Bell state is created and anal-
ysed for standard single tone (N = 1) and two tone
(N = 2) MS gates, since moving from one to two tones
should show the largest improvement in gate robustness.
The single tone MS gate procedure is detailed in more
detail in [26]. The gate was performed on the stretch
mode of the ions, with frequency ν/2π = 461 kHz which
gives an effective Lamb-Dicke parameter of η = 0.004.
Single and two tone gates with the same gate time τ and
detuning δ were compared. The single tone gate uses a
pair of gate fields per ion, each of carrier Rabi frequency
Ω0/2π = 36 kHz, and, since δ = 2ηΩ0 the detuning is
δ/2π = 292 Hz and the gate time is τ = 2π/δ = 3.42 ms.
The two tone gate uses two pairs of gate fields per ion,
with the Rabi frequencies of the two tones in each pair
being Ω1 = −0.576Ω0 at δ and Ω2 = 1.152Ω0 at 2δ,
corresponding to c1 = −0.144 and c2 = 0.288. The beat-
ing between the two tones produces a time-varying Rabi
frequency, and thus a time varying Stark shift that we
compensate for by changing the gate field detunings dur-
ing the gate operation - see Supplemental Material [16]
for more information. Before performing the gate oper-
ation the stretch mode was sideband cooled to an initial
temperature of n̄ ≈ 0.1 [27].

The fidelity of Bell-state production is found by mea-
suring selected elements of the density matrix, specifi-
cally the total population in the states |0′0′〉 and |DD〉,
and the coherence between these two states [26]. A maxi-
mum likelihood method was used to determine these two
values, as well as the errors in their measurement (see
Supplemental Material [16]).

To demonstrate the effectiveness of the MTMS tech-
nique for protection against heating, the heating rate was
artificially increased. Randomly generated noise with a
flat amplitude spectrum over a bandwidth of 20 kHz cen-
tred around the secular frequency, ν, was capacitively
coupled onto an endcap DC trap electrode, and the heat-
ing rate controlled by changing the amplitude of this
noise. Heating rates with no added noise, and for two
different amplitudes of artificial noise, were measured by
introducing a varying time delay after sideband cooling
and measuring the temperature of the ion using side-
band spectroscopy. Figure 2 shows the gate fidelity as
a function of these three heating rates for both single
and two tone gates.The solid lines are the results of a
numerical simulation of the master equation with appro-
priate Lindblad operators to model heating, the results
of which show good agreement with the theoretical val-
ues for fidelity given by equation S.7 of the Supplemental
Material [16]. The dashed line is the result of a numerical
simulation for a faster single tone gate at a higher power,
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FIG. 2. Infidelities due to heating are reduced by moving
from a single to a two tone MS gate, shown in red and blue
respectively. Both gates are of duration τ = 3.4 ms. Solid
lines are the results of a numerical simulation, and three ex-
perimental points are shown for each type of gate where the
heating rate has been increased artificially through noise in-
jection. Fidelities are normalised to the fidelity at the single
tone fidelity measured at the lowest heating rate (0.94(2))
to account for other errors [29]. The two tone gate requires
a higher peak Rabi frequency for a given gate duration. Nu-
merical simulation of a faster single tone gate with this higher
Rabi frequency is shown in a dashed black line, showing the
two-tone gate is still superior.

as defined by the peak Rabi frequency used for the two
tone gate, and demonstrates that two tone gates still ex-
hibit lower error due to heating. No increase in fidelity
is observed for the two tone gate at no induced heat-
ing compared to the single tone gate due to the small
contribution to overall infidelity from heating, smaller
than the measurement uncertainty. The measured infi-
delity at no induced heating is thought to be largely a
result of dephasing and depolarising, and parameter mis-
set primarily of the form ∆b 6= ∆r, where ∆r and ∆b are
the detuning errors on each sideband (see Figure 1(a)).
Methods to protect against this error exist [28] and com-
bining these with MTMS techniques may offer a solution.

In order to demonstrate robustness to symmetric de-
tuning errors, a symmetric detuning error of up to ±0.2δ
was added to the nominal zero error detuning [30]. Re-
sults are shown in figure 3, where again solid lines show
the result of numerical simulation. A clear consistency
between simulation and experimental results can be seen,
demonstrating strong protection against both heating
and detuning errors obtained by using a two tone rather
than the standard single tone MS gate.

Since the symmetric detuning error for multi-tone
gates no longer exhibits any dependence on the initial
mean excitation of the motional mode of the ions to
first order in ∆/δ, this also opens up the possibility of
performing gates at higher n̄ which can for example be
reached by Doppler cooling. A multi-tone gate of fidelity
0.851(9) has been demonstrated at an initial thermal
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FIG. 3. The effect of symmetric detuning error is significantly
reduced by moving to two tones, shown here for a gate dura-
tion of τ = 3.4 ms. The experimental fidelities for non-zero
nominal detuning errors are calculated with respect to the
Bell state defined by zero nominal detuning, to account for
any phase shift induced by the error. Solid lines are from
numerical simulations, but with an offset applied to detuning
error to account for any error in determining the trap fre-
quency. Experimentally determined fidelities are normalised
to the single tone fidelity with zero nominal detuning error
(0.96(2)) to account for other infidelities. The symmetric de-
tuning offset was fitted using the single tone theory curve to
account for the uncertainty in the initial setting of experimen-
tal parameters.

FIG. 4. Parity curves at an initial motional mode of n̄ = 53(4)
for a single (red) and two tone (blue) gate after ions have been
only Doppler cooled. A significant improvement in contrast
is seen for the two tone gate, since the dependence of gate
infidelity on n̄ to first order in ∆ is eliminated by the use of
multiple tones.

state with n̄ = 53(4), compared to a single tone fidelity of
0.50(5), as shown in figure 4. The dominant infidelity of
the MTMS gate is expected to be due to detuning errors
of the form ∆r 6= ∆b, which remain sensitive to n̄.

We have shown that for a given gate time, the use of
a two tone MS gate instead of a standard single tone MS
gate substantially reduces the effect of motional heating,
as well as significantly lowering the sensitivity to sym-
metric detuning errors. This comes at a cost in terms of
resources - the peak power required to drive the gate is
three times higher, while the average power is 5

3 times
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higher. However, provided heating is a significant source
of error, MTMS gates should prove a powerful tool, par-
ticularly for large scale systems required for quantum
computing with comparatively low ion heights and po-
tentially noisier and less stable environments [31, 32].

In addition, we note that MTMS gates also provide
protection against fluctuations in the trap frequency
caused by Kerr coupling of the stretch mode to the radial
mode [33, 34], which is only Doppler cooled, thus alleviat-
ing one of the main restrictions on using the stretch mode
for two qubit gates. Finally, use of MTMS gates also act
to reduce off-resonant excitation of the carrier caused by
the gate fields compared to a single tone gate, despite
the higher peak power. This is due to the lower initial
Rabi frequency and the sinusoidal variation in Rabi fre-
quency acting as a natural pulse shaping to reduce this
excitation, opening up the potential for performing faster
gates.

After the preparation of the manuscript, we have be-
come aware of related work where similar methods were
used to make laser based entangling gates more robust
[35].
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plications of surface noise for the motional coherence of
trapped ions. Phys. Rev. A, 93:043415, Apr 2016.

[8] L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger,
J. Sterk, and C. Monroe. Scaling and suppression
of anomalous heating in ion traps. Phys. Rev. Lett.,
97:103007, Sep 2006.

[9] A. Sørensen and K. Mølmer. Quantum computation with
ions in thermal motion. Phys. Rev. Lett., 82:1971–1974,
Mar 1999.

[10] A. Sørensen and K. Mølmer. Entanglement and quantum
computation with ions in thermal motion. Phys. Rev. A,
62:022311, Jul 2000.

[11] D Leibfried, B DeMarco, V Meyer, D Lucas, M Barrett,
J Britton, W M Itano, B Jelenkovic, C Langer, T Rosen-
band, and D J Wineland. Experimental demonstration
of a robust, high-fidelity geometric two ion-qubit phase
gate. Nature, 422:412–415, 2003.

[12] D. Hayes, S. M. Clark, S. Debnath, D. Hucul, I. V. Inlek,
K. W. Lee, Q. Quraishi, and C. Monroe. Coherent error
suppression in multiqubit entangling gates. Phys. Rev.
Lett., 109:020503, Jul 2012.

[13] F. Haddadfarshi and F. Mintert. High fidelity quantum
gates of trapped ions in the presence of motional heating.
New Journal of Physics, 18(12):123007, 2016.

[14] T. J. Green and M. J. Biercuk. Phase-modulated decou-
pling and error suppression in qubit-oscillator systems.
Phys. Rev. Lett., 114:120502, Mar 2015.

[15] P. H. Leung, K. A. Landsman, C. Figgatt, N. M. Linke,
C. Monroe, and K. R. Brown. Robust 2-qubit gates in
a linear ion crystal using a frequency-modulated driving
force. Phys. Rev. Lett., 120:020501, Jan 2018.

[16] See Supplemental Material [url] for further details, which
includes Refs. [17-19].

[17] J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt,
N. V. Vitanov, and W. K. Hensinger. Generation of high-
fidelity quantum control methods for multi-level systems.
Physical Review A (to be published), 2018.

[18] R. Noek, G. Vrijsen, D. Gaultney, E. Mount, T. Kim,
P. Maunz, and J. Kim. High speed, high fidelity detection
of an atomic hyperfine qubit. Opt. Lett., 38(22):4735–
4738, Nov 2013.

[19] A. H. Burrell, D. J. Szwer, S. C. Webster, and D. M.
Lucas. Scalable simultaneous multi-qubit readout with
99.99% single-shot fidelity. Phys. Rev. A, 81:040302,
2009.



6

[20] J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C.
Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt,
and W. K. Hensinger. Versatile ytterbium ion trap exper-
iment for operation of scalable ion-trap chips with mo-
tional heating and transition-frequency measurements.
Phys. Rev. A, 83:013406, Jan 2011.

[21] F. Mintert and C. Wunderlich. Ion-trap quantum
logic using long-wavelength radiation. Phys. Rev. Lett.,
87:257904, Nov 2001.

[22] K. Lake, S. Weidt, J. Randall, E. D. Standing, S. C. Web-
ster, and W. K. Hensinger. Generation of spin-motion
entanglement in a trapped ion using long-wavelength ra-
diation. Phys. Rev. A, 91:012319, Jan 2015.

[23] N. Timoney, I. Baumgart, M. Johanning, A. F. Varón,
M. B. Plenio, A. Retzker, and Ch. Wunderlich. Quan-
tum gates and memory using microwave-dressed states.
Nature, 476:185 EP –, 08 2011.

[24] S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin, and
W. K. Hensinger. Simple manipulation of a microwave
dressed-state ion qubit. Phys. Rev. Lett., 111:140501, Oct
2013.

[25] J. Randall, S. Weidt, E. D. Standing, K. Lake, S. C. Web-
ster, D. F. Murgia, T. Navickas, K. Roth, and W. K.
Hensinger. Efficient preparation and detection of mi-
crowave dressed-state qubits and qutrits with trapped
ions. Phys. Rev. A, 91:012322, Jan 2015.

[26] S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E.
Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker,
and W. K. Hensinger. Trapped-ion quantum logic with
global radiation fields. Phys. Rev. Lett., 117:220501, Nov
2016.

[27] S. Weidt, J. Randall, S. C. Webster, E. D. Standing,
A. Rodriguez, A. E. Webb, B. Lekitsch, and W. K.
Hensinger. Ground-state cooling of a trapped ion using
long-wavelength radiation. Phys. Rev. Lett., 115:013002,
Jun 2015.

[28] T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira,

N. Akerman, A. Retzker, and R. Ozeri. Fast dynami-
cal decoupling of the Mølmer-Sørensen entangling gate.
Phys. Rev. Lett., 119:220505, Nov 2017.

[29] The gate infidelity is primarily due to dephasing and de-
polarisation of the qubits, and parameter mis-sets of the
form ∆r 6= ∆b caused by difficult to characterise Stark
shifts. We did not fully compensate errors due to Stark
shifts, which are the largest contribution to the infidelity,
in order to accelerate acquisition of data since this work
is focussed on the mitigation of symmetric detuning and
heating induced errors, rather than realising a gate of
high fidelity.

[30] Due to a.c. Stark shift caused by the gate fields causing
a symmetric detuning offset, and the difficulty of accu-
rately measuring the carrier Rabi frequency Ω0 directly,
we have to experimentally determine the correct value of
the detuning δ for a given gate time τ .

[31] K. G. Johnson, J. D. Wong-Campos, A. Restelli, K. A.
Landsman, B. Neyenhuis, J. Mizrahi, and C. Monroe.
Active stabilization of ion trap radiofrequency potentials.
Review of Scientific Instruments, 87(5):053110, 2016.

[32] N. D. Guise, S. D. Fallek, H. Hayden, C-S Pai, C. Volin,
K. R. Brown, J. T. Merrill, A. W. Harter, J. M. Amini,
L. M. Lust, K. Muldoon, D. Carlson, and J. Budach. In-
vacuum active electronics for microfabricated ion traps.
Review of Scientific Instruments, 85(6):063101, 2014.

[33] C. F. Roos, T. Monz, K. Kim, M. Riebe, H. Häffner,
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