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We study Brownian dynamics of colloidal spheres, with planar anchoring conditions, suspended in
the nematic phase of the lyotropic chromonic liquid crystal disodium chromoglycate (DSCG). Unlike
typical liquid crystals, the unusually small twist elastic modulus of DSCG permits two energetically
distinct helical distortions (twisted tails) of the nematic director to “dress” the suspended spheres.
Video microscopy is used to characterize the helical distortions versus particle size and to measure
particle mean-square displacements. Diffusion coefficients parallel and perpendicular to the far-field
director, and their anisotropy ratio, are different for the two twisted tail configurations. Moreover,
the cross-over from sub-diffusive to diffusive behavior is anomalously slow for motion perpendicular
to the director (>100 seconds). Simple arguments using Miesowicz viscosities and ideas about twist
relaxation are suggested to understand the mean-square displacement observations.

The investigation of Brownian dynamics boasts a spec-
tacular history that has produced deep insights about
statistical mechanics and about the microscopic environ-
ments of diffusing particles [1–4]. Although most of this
work concerns the motion of spheres in isotropic media,
the effects of anisotropy in Brownian dynamics are prov-
ing to be fascinating as well, including the diffusion of
anisotropic particles in isotropic fluids [5–10] and parti-
cles of all types in anisotropic fluids [11–17].

In this contribution, we explore diffusion of spher-
ical particles in the lyotropic chromonic liquid crys-
tal (LCLC) disodium cromoglycate (DSCG). This back-
ground fluid is a nematic liquid crystal (LC) composed
of self-assembled achiral rod-like molecular assemblies
aligned uniaxially along a director, n (Figure 1a) [18, 19].
As in all LC systems, particles in DSCG are expected to
exhibit different coefficients for diffusion parallel versus
perpendicular to the director field [11, 13, 14, 16, 20]. Ly-
otropic chromonic liquid crystals are different from typ-
ical LCs, however, because they easily form twisted or
chiral configurations due to their unusually small twist
elastic modulus [21–23], an effect also seen in polymer
nematic LC systems [24, 25]. Thus the local environment
for a sphere diffusing in DSCG has a chiral character that
depends sensitively on the interplay of bulk elasticity, lo-
cal geometry, and director boundary conditions. Indeed,
it has been shown [26] that spherical colloidal particles
with planar anchoring in the nematic phase of DSCG in-
duce localized helical distortions, i.e., “twisted tails” that
extend away from the particle parallel to the uniform
far-field director n0 (Figure 1b-h). The energetics and
symmetries of these “twisted tail” configurations have
been studied [26, 27], but to our knowledge the effects of
chiral distortion of the director on unconstrained parti-
cle diffusion have not been considered nor investigated.
Moreover, the influence of giant twist elastic anisotropy
on relaxation dynamics, broadly defined, has never been
explored.

To this end we employ video and polarized optical

microscopy (POM) to investigate diffusion of spheres
“dressed” by two classes of chiral director configurations
with twisted tails. Diffusion coefficients, parallel and per-
pendicular to the far-field director, as well as diffusion
anisotropy, are revealed to be different for the two classes.
In addition, the short-time diffusion dynamics show sub-
diffusive scaling for motion parallel and perpendicular to
the far-field director, and they exhibit anomalously long
relaxation times (>100 seconds) for diffusion perpendic-
ular to n0. We offer qualitative arguments to understand
the measured diffusion coefficient anisotropy based on the
Miesowicz viscosities of LCLCs, and we show how giant
twist elastic anisotropy can introduce differences in the
diffusion behavior of the dressed particles. Our results
complement and differ from diffusion measurements, re-
ported in Ref. [16], of heavy silica spheres very close to
the substrate without director configuration class identi-
fied (see Supplementary Information (SI), Section 4). By
positioning particles farther from the substrates, our ex-
periments ameliorate surface drag effects and probe the
bulk LC response more effectively. These improvements
enable us to uncover substantial variation in subdiffu-
sivity parallel versus perpendicular to n0, and to distin-
guish diffusion of particles dressed by different director
field configurations. Broadly, the present work elucidates
how chiral structures that readily form in LCLCs can af-
fect the dynamics of embedded micro- and nano-particles
which, in turn, influences our ability to control particles
in LCs for potential device applications [28, 29].

Our experiments (see also, SI) employ polystyrene di-
vinylbenzene (DVB) spheres in DSCG, with diameters,
d, ranging from 6.5 to 7 µm (unless otherwise spec-
ified); typical polydispersity in the source samples is
∼2.4%. DSCG molecules are plank-like (inset, Figure
1a). The suspensions consist of ∼16 wt.% DSCG and
∼0.015 wt.% X100 surfactant in DI water to prevent the
formation of particle clusters. The sample suspensions
are loaded into rectangular cells with two rubbed glass
substrates, or with one rubbed glass substrate and one
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FIG. 1. (a) Illustration of the nematic phase of DSCG. The nematic mesogens are stacks of plank-like molecules. (b-g) A
spherical particle with planar boundary conditions suspended in the uniaxially aligned nematic phase of DSCG induces two
distinct twisted tail director configurations: class 1 (b, c, d) and class 2 (e, f, g). (b) and (e) are schematics of twisted director
fields (black lines) around the particle. (c) and (f) are crossed-polarized (white arrows) microscopy images. (d) and (g) are
crossed-polarized microscopy images with an inserted full waveplate (green arrow). (h) Tail length plotted as a function of
particle radius for both symmetry classes. Dotted lines show best proportional fits for each class (see text).

rubbed polyimide-coated (SE-7511L; Crystal Diagnos-
tics) substrate. Since the particle density (1.05 g/cm3)
is slightly lower than the density of the DSCG solution
(1.0784 ± 0.0032 g/cm3), the particles are weakly driven
toward the upper substrate by gravity. We permit the
suspensions to equilibrate for 1.5 days before imaging
to ensure that particle proximity to the cell substrate
is consistent and does not influence measured diffusion
(SI Section 4). The sphere number density is also kept
very low to maintain interparticle separations >10 di-
ameters and thereby minimize long-range elastic interac-
tions. Once equilibrated, sample cells are placed within
a home-built, temperature-controlled chamber mounted
on a microscope stage (SI Figure 2). The temperature is
held to within 0.1 ◦C, and one hour is allowed for tem-
perature equilibration before experiments begin.

Samples are imaged in bright-field and POM using a
Leica DM IRB Inverted Microscope with 100x oil objec-
tive (N.A. = 1.4). Typically, digital imaging at 60 frames
per second over a period of ∼15 minutes is carried out
using a CMOS camera (Mikrotron EoSens CL MC1362).
Particle tracking uses standard IDL routines [30]. The
mean-square displacement (MSD) experimental results
are typically generated from ∼30 video trajectories (∼10
trajectories for 3 particles in each class at each temper-
ature). The MSD curves shown represent an average of
these trajectories; error bars reported for diffusion coef-
ficients are derived from fits to the average curves.

The resultant particles in the nematic LCLCs are
dressed by twisted tails. In contrast to conventional LC
systems, wherein spherical particles with planar anchor-
ing generate topological quadrupoles with large splay and
bend distortions in the surrounding nematic [15], the
splay and bend elastic energies in LCLCs are reduced
by twisting the director. As a result, the character of
the elastic distortion in the particle vicinity is novel and

varied (Figure 1b-g). One configuration symmetry (class
1), with the director spiraling around the central axis in
the same sense on opposite sides of the colloidal particle,
is called a chiral dipole and is characterized as an elastic
multipole composed of both quadrupole and chiral dipole
terms [27, 33, 34]. The other director configuration (class
2) is globally non-chiral, because the director spirals in
an opposite sense on opposite sides of the particle and
thereby creates a mirror plane of symmetry (red dashed
line in Figure 1e). Generation of either symmetry class is
spontaneous and reversible via melting and re-quenching
of the nematic background phase (SI Figure 3). The class
1 configuration is calculated to have the lowest energy
[26]. In our experiments, we observe both configurations
with probabilities ∼64% for class 1 and ∼36% for class 2
(more details, SI Section 2), which supports the calcula-
tions. We do not observe spontaneous transformation of
one class to another without reheating the sample.

Director distortions near the particle are predicted to
diminish as the sphere radius is decreased [26]. We mea-
sured this effect for the first time and report it in Figure
1h for both classes. An estimate for tail length in each
class is obtained by fitting the POM image intensity data
to a decaying exponential (SI Section 3). Even for the
smallest particles (d ≈ 1.5 µm), the distortions never
vanish completely. The tail length, defined as the ex-
ponential decay length, is ∼8 µm (∼6 µm) for the class
1 (class 2) particles employed in the diffusion measure-
ments; the tail length is ∼2.4 (∼1.8) times the particle
radius. Thus our data for large diameter particles (d >∼ 4
µm) are consistent with a theoretical prediction that the
director distortion scales with particle radius [26]if the
particle is far from the substrate and anchoring at all
surfaces is infinitely strong. In short, spherical particles
in the LCLC effectively become anisotropic and twisted
composite objects when dressed by the surrounding ne-
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FIG. 2. (a) Mean-squared-displacement (MSD) parallel (red) and perpendicular (blue) to n0 plotted versus lag time for class 1
particles at 23 ◦C. The black solid line is the MSD for a similar particle in pure water. (b) Comparison of MSD versus lag time
for class 1 and 2 particles diffusing parallel to n0 at 23 ◦C. (c) Comparison of MSD versus lag time for class 1 and 2 particles
diffusing perpendicular to n0 at 23 ◦C. Black dashed lines in all plots show normal diffusion (i.e., MSD ∝ τ).

matic field.

Figure 2 shows our primary mean-squared-
displacement (MSD) versus lag time (τ) results.
Figure 2a exhibits the salient features of all trajectories.
Motion parallel to n0 is more substantial than perpen-
dicular to n0, with a comparatively fast cross-over from
sub-diffusive to diffusive behavior. By contrast, this
same cross-over occurs much more slowly for motion
perpendicular to n0. Figure 2b,c compares the MSD
curves parallel and perpendicular to n0 for class 1
and 2 particles. These data clearly demonstrate that
nearly identical colloidal spheres, dressed with the two
types of twisted tails, diffuse differently: particles with
longer, globally chiral helical tails (class 1) diffuse more
slowly than particles with shorter, globally achiral tails
(class 2). Long-time diffusion coefficients parallel and
perpendicular to n0 are given in Table I. We also
studied diffusivity temperature-dependence and found
that (1) diffusivity at long lag times increases with
temperature as expected, and (2) sub-diffusivity persists
at all temperatures (SI Section 5).

The diffusion coefficient anisotropy ratios for the two
classes are also shown. Although the dressed spheres
do not rotate like ellipsoids, comparison to the diffusion
of ellipsoids in isotropic fluids is revealing. Diffusion is
slower for motion perpendicular to the ellipsoid long axis,
as is the case for the dressed particles. Moreover, the dif-
fusion anisotropy is larger for ellipsoids with larger ma-
jor/minor axis ratios, just as class 1 particles with larger
effective aspect ratios have larger diffusion anisotropies
than class 2 particles. However, as expected, the dressed
particles are different from ellipsoids. The class 1 and
class 2 diffusion anisotropy ratios in Table I, for example,
are significantly larger than for ellipsoids diffusing in 3D,
and comparable only to ellipsoids with axis ratios >8 and
∼5, respectively, diffusing in quasi-2D [7, 35, 36]; axis ra-
tios for the dressed spheres based on their measured tail
lengths and diameters are ∼3.4 and ∼2.8, respectively.

Diffusion anisotropy, resulting from the direction-
dependent viscous drag, is typical in nematics, but the

TABLE I. Diffusion coefficients and diffusion anisotropy ra-
tio for class 1 and 2 particles at 23 ◦C. These constants are
extracted from linear fits to the MSD curves in Figure 2b,c
between lag times of 10 and 150 seconds for D‖ and between
100 and 150 seconds for D⊥.

Diameter D‖ ×10−16 D⊥ ×10−16 D‖/D⊥

(µm) (m2/s) (m2/s)

Class 1 6.70± 0.16 2.67± 0.18 0.515± 0.070 5.19

Class 2 6.59± 0.14 3.90± 0.25 1.12± 0.11 3.48

Stokes drag on a sphere in a nematic LC is very chal-
lenging to calculate [15, 20, 31, 32]. It is governed
by Ericksen-Leslie equations that connect fluid flow to
the director reorientation via elastic and viscous stresses
[13, 14, 37, 38]. The coefficients of the viscous stress ten-
sor, the Leslie coefficients, combine to give three Miesow-
icz viscosities, ηa, ηb and ηc, for the three shear geome-
tries shown in Figures 3a (a-type geometry), 3b (b-type),
and 3c (c-type), respectively. When considering parti-
cle diffusion through a uniaxially aligned nematic direc-
tor configuration, different Miesowicz viscosities become
important. For the case of pure (planar) quadrupoles
(Figure 3d,e and SI Figures 7a, 8a,d), when the particle
moves parallel to n0, the nematic fluid in the shaded re-
gions of Figure 3d (and SI Figure 7a) experiences mostly
b-type shear, since the larger component of the direc-
tor is parallel to the fluid velocity and perpendicular to
the velocity gradient. The smaller director component
is perpendicular to the fluid velocity and parallel to the
velocity gradient, resulting in a small contribution of c-
type shear, so η‖ ∼ ηb + εηc (ε � 1). When the same
particle moves perpendicular to n0, as in Figure 3e (also,
SI Figure 8a,d), the nematic fluid in the shaded regions
experiences mostly c-type shear, since the larger compo-
nent of the director is perpendicular to the fluid velocity
and parallel to the velocity gradient. However, in regions
in front and behind the plane of Figure 3e, the larger
component of the director is perpendicular to both the
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FIG. 3. (a-c) Three shear geometries of a nematic LC between parallel plates corresponding to the three Miesowicz viscosities
(a) ηa, (b) ηb and (c) ηc. (d, e) Cross-sectional schematic of a spherical particle with tangential surface anchoring suspended
in a uniaxially aligned nematic. Black lines represent the equilibrium director field for a stationary particle. Red dashed lines
represent perturbations in the director field due to colloidal displacements (depicted by red arrows) either (d) parallel or (e)
perpendicular to n0. The green shaded regions are regions of interest when considering the effects of the Miesowicz viscosities
(see text and SI). The round arrows to the right indicate that the equilibrium field is axially symmetric. (f-h) Calculated (f)
splay, (g) twist and (h) bend distortions as predicted by the theoretical ansatz from ref. [27]. (i-n) Calculated changes in the
director fields shown in panels (f-h), due to small particle translations (∆xp,∆yp ≈ 4.5 nm) both (i-k) perpendicular and (l-n)
parallel to n0. The reference frame and color scale insets in panels (m) and (n), respectively, apply to panels (f-n).

fluid velocity and velocity gradient, so a-type shear is
also present. The smaller director component is paral-
lel to the fluid velocity and perpendicular to the velocity
gradient so b-type shear gives a small contribution, so
η⊥ ∼ (ηa + ηc)/2 + εηb.

Typically, for rod-like nematics [14, 20, 25], ηb < ηa <
ηc; thus, we expect D‖ > D⊥ as observed. These qual-
itative estimates are useful because they resemble pre-
dictions of simple analytical models using the Ericksen-
Leslie equations [20]. However, numerical models ad-
dressing planar anchoring at the particle surface show
that the effective viscosities are generally not simple com-
binations of the Miesowicz viscosities [20]. Furthermore,
the relationships between the Miesowicz viscosities and
the effective viscosities are further complicated by the
helicity and large anisotropy of the chiral director distor-
tions (SI Figures 7, 8). Nevertheless, based on the field
symmetry and the size of the overall distortions around
the spheres, we expect and observe that class 2 particles
(SI Figures 7a,c, 8d,f) experience an effective viscosity
comparatively more similar to that of a pure (planar)
quadrupole than the class 1 particles.

Finally, following a phenomenological analysis simi-
lar to that in Ref. [16], we consider the origin of the
timescales which characterize the cross-over from sub-
diffusive to diffusive behavior. Sub-diffusive behavior at
short lag times derives from LC-mediated elastic forces
due to displacement- and thermally-driven fluctuations
of the surrounding director field. Director field pertur-
bations due to colloidal displacements cost elastic free
energy and generate restoring forces on the particle. Ul-
timately, they relax back to equilibrium configurations.

The surrounding director perturbations are expected

to relax with a characteristic time τi ∼ l2i ηi/Ki, where ηi
is an effective viscosity, Ki is an elastic constant, and li
is a characteristic length scale of the director distortions
that must relax back to equilibrium [16, 37, 38]; the sub-
script indicates the type of distortion that is relaxing
(twist, bend, or splay). Strictly speaking this analysis
applies to the relaxation of small periodic fluctuations in
the director orientation about the equilibrium field, n0

[21, 37, 38]. Previously, for diffusing particles, li has been
assumed to be the particle diameter d [16], but better
estimates might consider the regions around the parti-
cle wherein distortions change most due to small particle
displacements (see below). We posit that cross-over from
sub-diffusion to normal diffusion will occur on timescales
comparable to τi. To derive these timescales, we use
measured estimates for the effective viscosities and elas-
tic constants of DSCG at 23 ◦C [21], and we choose, for
simplicity, li = 2 µm for all cases. These assumptions
provide an estimate τi for each distortion mode: (τsplay,
τtwist, τbend) ∼ (8 s, 133 s, 0.002 s). Notice, the twist
relaxation time is very long compared to bend and splay
as long as the characteristic length scales of the director
distortions are comparable; moreover, the timescale of
∼100 seconds for twist relaxation is in rough agreement
with the observed cross-over time for particle motion per-
pendicular to n0.

To understand more deeply how the director field
distortions can affect particle diffusion dynamics, we
compute the variation of each pure distortion (splay,
twist and bend) due to a small particle displacement
(∆xp,∆yp << d) either parallel or perpendicular to n0;
here we utilize class 1 spheres because a model describ-
ing the distortions is available [27]. The calculated splay,
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twist and bend distortions are plotted in Figure 3f-h for a
stationary sphere. It is apparent that all modes of distor-
tion are present. In Figure 3i-n, we plot the magnitude
of the change in these distortions due to small particle
displacements (∆xp,∆yp ∼ 4.5 nm) perpendicular (Fig-
ure 3i-k) and parallel (Figure 3l-n) to n0. These are the
director fluctuations that must relax back to equilibrium
after the displacement. Notably, the plots (Figure 3i-n)
suggest that the largest changes in n are associated with
twist for particle motion perpendicular to n0; further-
more, significantly less overall change in n is observed
for motion parallel to n0. These findings, and the rel-
ative timescales for relaxation estimated above, provide
strong evidence that long-lived twist distortions play a
dominant role in affecting diffusion dynamics in LCLCs.

In summary, the diffusion of spheres in LCLCs is quite
different from diffusion in thermotropic LCs. The pri-
mary origin of these differences is the unusually small
twist elastic constant of LCLCs. Because twist distor-
tions are energetically cheap, the director configuration
on each side of the particle is chiral, leading to twisted
tails that extend much farther away from the particle
than the splay and bend distortions of pure quadrupoles.
We showed that these differences in twist uniquely af-
fect particle dynamics, both diffusive and sub-diffusive
motions, as well as the timescales for these processes.
Further, differences in diffusion constants and diffusion
anisotropy are found for the two chiral director config-
urations. All of these phenomena are manifestations of
the giant twist elastic anisotropy characteristic of LCLCs.
Thus, twist effects can be expected to influence our abil-
ity to control micro- and nano-particles in LCs.
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