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Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple,
isotropic interactions. We consider the entire class of these magnets when their interactions are spatially
anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be mapped
onto the folding motions of a generalized “spin origami” two-dimensional mechanical sheet. Some such
anisotropic spin systems, including Cs2ZrCu3F12, map onto flat origami sheets, possessing extensive degen-
eracy similar to isotropic systems. Others, such as Cs2CeCu3F12, can be mapped onto sheets with non-zero
Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even such distor-
tions do not always lift the entire degeneracy, instead permitting a large but sub-extensive space of zero-energy
modes. We show that for Cs2CeCu3F12, due to an additional point group symmetry associated with structure,
these modes are ’Dirac’ line nodes with a double degeneracy protected by a topological invariant. The existence
of mechanical analogs thus serves to identify and explicate the robust degeneracy of the spin systems.

Frustrated condensed matter such as kagome Heisenberg an-
tiferromagnets (KHAF) possesses many degenerate ground
states that can be either delicate or robust, despite being ac-
cidental in the sense of not being protected by a symmetry.
Isotropic KHAF have been mapped onto triangulated sheets
of “spin origami” [1–3], revealing that, at the classical level,
these materials can have as many ground states [4] as there are
ways to fold a sheet of paper with one crease for each atomic
spin [5]. Splitting this degeneracy by making the magnetic
moments spin-1/2 would permit the formation of a quantum
spin liquid [6, 7], but “clearly the KHAF is a problem where
competing states of very different character lie very close in
energy” [8]. Like many other strongly correlated materials, a
complex phase diagram arises and to our knowledge no gen-
eral explanation has even been proposed. However, at least in
the classical large-S limit, it appears that recent advances in
the study of metamaterials [9–20], such as origami, suggest
just such an explanation.

Mechanical systems are among the oldest subject to formal
study, yet today mechanical metamaterials display new prop-
erties and states of matter derived purely from their structure.
Many such systems rely on a counting argument developed
by Maxwell to determine mechanical stability by counting de-
grees of freedom (d.o.f.) and constraints [21] and extended by
Calladine to account for redundant constraints [22]. Recently,
Kane and Lubensky [13] relied on this count to discover, in
the context of ball and spring systems, that systems could dis-
play exotic zero-energy boundary modes when they had equal
numbers of d.o.f. and constraints. In an initially gapped sys-
tem the difference between these quantities, labeled ν, can
only go from 0 to 1, indicating the appearance of a zero mode,
when the gap closes. In this context, called “isostatic”, ν itself
is a topological invariant. Further, they build a local version
of Maxwell counting and derive a winding number topologi-
cal invariant for phonon band structures which demands edge
states in “polarized” isostatic systems [13], bulk solitons in
isostatic one dimensional systems [23], and Weyl point nodes

in isostatic two dimensional systems [18, 24]. In systems
with translational symmetries, such a gap trivially closes at
wavevector k = 0, but survives for spatially varying modes.
Thus, by combining energy gaps with Maxwell counting, a
topological mechanics emerges that connects zero modes to
topological invariants.

This discovery brings new meaning to Moessner and
Chalker’s two seminal papers [25, 26] that exploited Maxwell
counting to shed light on the accidental ground state degen-
eracy of classical kagome and a few other antiferromagnets.
Grouping the terms in the Hamiltonian into constraints, a pro-
cedure that underlies the spin origami construction, they ar-
gue Maxwell’s ν is often a useful measure of frustration in
frustrated magnets. They show that ν > 0 in the pyrochlore
Heisenberg antiferromagnet and demands zero modes while ν
vanishes in the isotropic kagome KHAF so that its zero modes
must arise from a redundancy among the constraints. This
redundancy renders the kagome case complex from this per-
spective, but since it has ν = 0, like Kane and Lubensky’s
isostatic systems, this complexity should come with topologi-
cal invariants that could provide an alternative explanation of
kagome zero modes.

In this Letter, guided by the concepts of topological me-
chanics, we study how topology and geometry explicate mag-
netic frustration in kagome antiferromagnets. Specifically,
we solve for the ground states of a class of distorted KHAF
obeying a condition (necessary and sufficient) under which
the ground states of those systems possess origami analogs.
We further identify Cs2ZrCu3F12 and Cs2CeCu3F12 as can-
didate materials that can foster such a spin origami state.
Surprisingly, the origami we predict for Cs2ZrCu3F12 is
flattenable like the original spin origami construction of
isotropic kagome antiferromagnets despite possessing spatial
anisotropies in the spin exchanges. It thus also features a flat
band in its spin wave dispersions. In distinction, the origami
we find for Cs2CeCu3F12 is nonflattenable and mechanically
more rigid. Nevertheless it retains a finite residual entropy
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FIG. 1. (a) Mapping from a spin configuration on the star of David to
an origami where the spins in the former represent the edge vectors
in the latter drawn in dotted lines. (b) A kagome “Star of David” with
nonuniform interactions which on the exterior bonds satisfy the star
condition (Eq. 2), necessary for a generic spin system to possess an
origami analog. The expression of the interior angle θij is given in
Eq. (3).

that has dramatic consequences – doubly degenerate topolog-
ical “Dirac” lines nodes in the spin wave dispersions akin to
the Fermi surface of a metal. We discover these lines of zero
modes follow from a combination of a special point group
symmetry of our predicted nonflattenable periodic origami
and a Z2 topological invariant we build from this symmetry
and its isostatic property. In passing, we also find singly de-
generate topological “Weyl” lines of zero modes follow from
a similar Z2 topological invariant for generic periodic origami
due to their mysterious realness property [20]. Thus, we show
these “origami magnets” have robust accidental degeneracy
by applying recent developments in the study of metamateri-
als to that of kagome antiferromagnets.

We define a generic KHAF by [27]

H =
∑
〈i,j〉

JijSi ·Sj =
1

2

∑
4α,4′β

S4αJ
4α,4′βS4′β +const.,

(1)
where α ∈ {x, y, z} denote the spin components of the
spin vector Si, J∆α,∆′β is a positive definite symmetric ma-
trix, S∆α = `∆i Siα + `∆j Sjα + `∆k Skα with ∆ denoting
a triangle with sites ijk, and `∆i are (dimensionless) posi-
tive real numbers. This form can be worked out straight-
forwardly for exclusively nearest neighbor exchanges. The
result is J∆α,∆′β = J∆δ∆,∆′δα,β , J∆ > 0 and `∆i =√
JijJik/J∆Jjk for triangle ∆ = 〈ijk〉. The zero-energy

condition then requires that the fixed-length vectors `∆i Siα on
a triangle sum to zero (S∆α = 0), the very condition that is
met by vectors along the edges of a rigid triangle of the type
shown in Fig. 1 (a), provided the anisotropy is not so strong
that the triangle inequality `∆i < `∆j + `∆k or its cyclic per-
mutations are violated. For the case of isotropic KHAF, these
triangles permitted the mapping of zero-energy configurations
onto folding patterns of an origami sheet consisting of equi-
lateral triangular faces [1–3, 5].

For an inhomogeneous system, however, we cannot guar-
antee the existence of an origami analog merely by satisfying∑

∆ `iSi = 0. This mapping specifies the shape of the trian-

gular face but not its scale; since each edge corresponds to two
faces but can have only one length (`∆i = `∆

′

i ), an additional
requirement emerges on the couplings around a magnetic sys-
tem such as those found in Fig. 1 (b) (see supplementary ma-
terial):

J1J3J5J7J9J11 = J2J4J6J8J10J12, (2)

where here we explicitly labeled the bonds of the lattice for
clarity. As we will see, this condition is met for some but not
all KHAF systems. It is a necessary and sufficient condition
for the existence of a particular (up to overall scale) origami
analog that corresponds to the ground state of a generic KHAF
(see supplementary material). However, even among such
systems, an important distinction arises depending on the ge-
ometry of the origami.

Vertices satisfying Eq. (2) are not in general flat. The in-
terior angle of the triangular surface associated with, e.g., the
triangle formed by Si, Sj , and Sk in Fig. 1 i.e. the angle be-
tween Si and Sj is given by

θij = cos−1

[
1

2

(
Jik
Jjk

+
Jjk
Jik
− JikJjk

J2
ij

)]
. (3)

We can compute them directly from the exchange constants.
It is only the special case for which the sum over the angles
about a vertex is 2π when the vertex can be formed from a flat
sheet, the condition that is usually (but not always [28, 29])
assumed for origami. “Non-Euclidean” vertices violate this,
and are said to have nonzero discrete Gaussian curvature (they
are nonflattenable, as described in the supplementary mate-
rial [30]) equal to the angle deficit [31]

G7 = 2π −
∑
〈ij〉∈7

θij , (4)

where 〈ij〉 ∈ 7 denotes all adjacent pairs of spins Si and Sj
that meet at the vertex at the center of the hexagon 7. When
this angle deficit vanishes, the spins adjoining the vertex can
be and are expected [32] to be coplanar. In this case, each
vertex possesses a zero mode corresponding to rotating the
spins (edges) out of plane. In contrast, nonzero angle deficits
preclude these local zero modes and necessarily lift the exten-
sive degeneracy. Thus, the sign of each vertex’s angle deficit,
µ7 ≡ sgn(G7) is a topological invariant, in that it can change
only when zero modes appear. More generally, other classes
of systems might lack zero modes even when µ7 = 0 be-
cause spins are prevented by their neighbors from assuming
coplanar configurations.

Note that these angle deficits, like the angles themselves,
depend only on the coupling constants [via Eq. (3)] and not
on the spin orientations. In the language of differential ge-
ometry, this is Gauss’s “Theorema Egregium”, that the Gaus-
sian curvature is intrinsic to the system and does not de-
pend on changes to its configuration that are isometries (zero
modes) [33, 34]. Thus, degeneracy is determined not by fluc-
tuations or dynamics but is largely determined by hidden geo-
metric constraints. While individual vertices are governed by
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geometry, they are collectively constrained to have zero total
angle deficit, due to topological constraints on the curvature
given by the Gauss-Bonnet theorem as described in the sup-
plementary material.

Among kagome materials that meet the star condition
[Eq. (2)] despite distortion, we identify two that exemplify
sharply distinct degeneracy. Cs2ZrCu3F12 [35, 36] has a pat-
tern of spins shown in Fig. 2 (a) that, despite distortion, never-
theless lead to flat vertices. Hence, they resemble the isotropic
spin origami previously studied [1, 2] despite their distortion.
In contrast, Cs2CeCu3F12 [37], as shown in Fig. 2 (b), with
vertices having a finite curvature ±G with

G = 4 cos−1 J3

2J2
− 4 cos−1 J4

2J1
. (5)

Evidently, G ↔ −G when J1,4 ↔ J2,3. The experimen-
tally measured values of the interaction parameters J1 = 316
K, J2 = 297 K, J3 = 88 K, and J4 = 85 K (taken from
Ref. [37]) yields G ∼ −0.055 [Fig. 2 (b)]. Straining the sys-
tem tunes the interactions away from these values pushing the
origami analog through a flat state and should therefore re-
sult in a topological phase transition in the sense of altering
the invariant µ7 ≡ sgn(G7), as described in the supplemen-
tary material. Such a situation is experimentally conceivable
as a controlled tuning of interactions in kagome systems has
been achieved by means of applying pressure [38] or uniaxial
stress [39].

Given the ground state ordering patterns of the Fluoride
materials shown in Fig. 2, we now turn to the question of
whether the associated spin waves in those materials have any
special features. We can qualitatively understand the frus-
tration associated with the zero modes of these two materi-
als by borrowing the concept of self stresses from topolog-
ical mechanics. In the mechanical analog of the flat spin
origami sheet (as in Cs2ZrCu3F12), we can add tensions to
the twelve edges of the six triangular faces adjoining a given
vertex while preserving mechanical equilibrium regardless of
the shapes of the coplanar faces. These self stress modes
then imply the existence of zero modes since they correspond
to redundancy of constraints functions in the triangle con-
ditions [22]. These zero modes are displacements of ver-
tices in the direction perpendicular to the faces. They are
the manifestation in distorted kagome antiferromagnets with
flattenable origami ground states of the zero modes existing
in isotropic kagome antiferromagnets. However, for generic
nonflattenable origami with non-coplanar edges, as in the
Cs2CeCu3F12 compound, many of these self stresses are no
longer possible—the rigidity of the sheet has become funda-
mentally enhanced via its geometry in a process akin to cor-
rugation. This then has the effect of lifting the zero-energy
band of phonons (lattice vibrations) from the origami system
and magnons from the analogous spin system. The mechani-
cal responses thus predict a flat band of spin waves associated
with flattenable origami ground states (frustration preserved
by distortions) but dispersing bands for nonflattenable origami
and suggests µ, mentioned above, may be a topological invari-

FIG. 2. (a) Right: The distorted kagome lattice structure of
Cs2ZrCu3F12 with interactions that satisfy the star condition. Left:
The origami analog of the q = 0 state of (a) is a flat sheet (G = 0 at
each vertex as shown) consisting of isosceles triangles. The dark blue
and the light blue faces correspond respectively to the blue-black and
red-blue triangles of the kagome lattice shown in the right. (b) Left:
The distorted kagome lattice structure of Cs2CeCu3F12 with inter-
actions obeying the star condition. Right: The spin origami for a
q = 0 state is a nonflattenable surface (with finite G defined in Eq. 5)
with coplanar pairs of triangles that form diamond shapes. The spin
configurations for both are denoted by yellow arrows.

FIG. 3. (a) Some of the lowest spin wave frequencies of
Cs2CeCu3F12 as plotted along the high-symmetry path in the BZ
shown in the inset and corresponding to the ground state specified by
b0 = 0.06 (see supplementary material for the definition of b0). (b)
A plot (in log scale) of the lowest frequency (ω0) in the BZ reveals
the Dirac Line nodes.

ant whose change is associated with the emergence of a zero
mode. So at this level we predict frustration can be relieved
by the distortions in Cs2CeCu3F12 but not in Cs2ZrCu3F12.

We can learn more about the zero modes by considering
the rigidity matrix [13]. It characterizes the entire linear spin-
wave theory of spin origami, which we choose to describe
in terms of small spin rotations about the ground state using
canonical variables xiµ ≡ (qi, pi) (see supplementary mate-
rial). From the constraint functions of the triangle condition,
the rigidity matrix is just the leading term obtained by expand-
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FIG. 4. (a) and (b) Dirac line nodes (thick red lines) separating zones of different values of η+ (yellow and blue correspond to ‘+’ and ‘-’
respectively) in the spin wave dispersions of Cs2CeCu3F12. We study these here for two different ground states (defined by the parameter
b0) that represent two members of the one dimensional family of origami configurations obtained for the periodic state (see supplementary
material). The insets of (a) and (b) are the plots of η+ over a circle in the BZ shown on the dotted line. The locations of the lines are decided by
the condition Det[R(k)] = 0 and depend on b0. (c) Under deformations that break the point group symmetry of Cs2CeCu3F12, each Dirac
line splits into two Weyl lines which are characterized by η in Eq. 8. The inset of (c) is the plot of η over a circle in the BZ.

ing in xiµ [27]:

R∆α,iµ =
∂S∆α

∂xiµ
. (6)

The Hamiltonian matrix governing the spin waves is then
HSW = RTR where R is a square matrix because the num-
ber of constraints is equal to the number of degrees of free-
dom ν = D − K = 0. Solving for the spin wave fre-
quencies, we find a flat band for the flattenable origami of
Cs2ZrCu3F12 as expected but doubly degenerate “Dirac” line
nodes for Cs2CeCu3F12 (see Fig. 3). Existence similar line
nodes have been previously reported in certain 3D topological
semimetals (see Ref. [40] and references therein), however,
not in magnetic systems or in 2D. So the rigidity matrix both
encodes the flat spin wave band of a flat origami and reveals
line nodes of nonflattenable origami.

Zero modes occur precisely at those wavevectors for which
Det[R(k)] vanishes. This determinant is for general mechan-
ical systems complex, leading to nonzero winding numbers

w(C) =
1

2π

∮
C

d(arg Det[R(k)]), (7)

around paths C in the Brillouin Zone that are protected under
lattice distortions. It either measures the circulation of iso-
lated Weyl point nodes C encloses [18, 24] or characterizes
the topological polarization if C is a non-contractible loop
across the torus [13]. But remarkably, for a generic model
of spin origami we find Det[R(k)] is a real number up to an
overall constant phase in the Brillouin zone (BZ). It obeys
the mysterious “realness” condition previously observed for
the rigidity matrices of triangulated mechanical origami [20].
The winding numbers w(C) therefore vanish for all C. After
eliminating a constant phase by choosing a gauge, however,
this realness condition defines another topological number:

η(k) = sign Det[R(k)]. (8)

It demands two regions in the BZ with different η(k) are sep-
arated by a line of zero modes – the topological Weyl line

nodes. We illustrate this in the supplementary material by gen-
erating periodic origami and observing how these line nodes
move and can vanish pairwise. So just by computing η(k) we
can learn a lot about the zero modes: while they may be lifted
by distortions [see Fig. 4 (c)], a generic nonflattenable origami
typically still has topological Weyl line nodes in its spin wave
dispersion. The Dirac line nodes must then somehow be pairs
of these Weyl line nodes.

To explain the double degeneracy, we have carried out a
symmetry analysis in the supplementary material [41]. We
now know adding a symmetry can eliminate topology and cre-
ate new topology. Specifically for Cs2CeCu3F12, whose tri-
angular faces pair up to create diamond shapes, its point group
symmetry explains the numerically observed double degener-
acy by playing a role analogous to Kramers degeneracy in a
metal. By plotting the 12 spins within the unit cell with tails at
a common origin we have uncovered precisely such a symme-
try. We find the point group has both unitary and antiunitary
symmetries which guarantee that we can place the rigidity ma-
trix in a block diagonal form with two 12 × 12 blocks each
with just real numbers as their elements. The determinant
then becomes Det[R(k)] = Det[R+(k)]Det[R−(k)] where
not only Det[R(k)] is real, but also Det[R±(k)]. We can then
define new topological invariants η±(k) = sign Det[R±(k)]
with η(k) = η+(k)η−(k). A plot of η+(k) is shown in
Fig. 4 evincing the effects of distortion that splits the Dirac
line nodes into Weyl type. The point group symmetry further
demands they both change sign if one of them changes sign
so that η(k) never changes sign (a loss of topology) and any
line nodes are doubly degenerate (a new topology). Hence, by
identifying the full point group symmetry and its antiunitary
character, we have explained the topological protection of the
double degenerate line nodes.

Finally, we should mention the topology of rigidity matri-
ces for origami that we uncover here has recently been ex-
tended to a full classification by two of the authors[42].

In summary we have identified broad classes of KHAF,
including two experimentally available fluoride compounds,
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whose degenerate ground states can be mapped onto the fold-
ing motions of origami sheets. The geometry, symmetry and
topology of these mechanical analogs explicates how seem-
ingly comparable spin interactions can either preserve or de-
stroy the extensive frustration, or even give rise to novel Dirac
line nodes. This mapping extends the original spin origami
concept to permit new notions of folding and straining struc-
tured mechanical sheets. New results in topological mechan-
ical metamaterials suggest that other magnetic systems may
yet realize exotic gapless modes on the boundary and Weyl
point nodes in the bulk.
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