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An electric field that builds in the direction against current, known as negative nonlocal resistance,
arises naturally in viscous flows and is thus often taken as a telltale of this regime. Here we predict
negative resistance for the ballistic regime, wherein the ee collision mean free path is greater than
the length scale at which the system is being probed. Therefore, negative resistance alone does not
provide strong evidence for the occurrence of the hydrodynamic regime; it must thus be demoted
from the rank of a smoking gun to that of a mere forerunner. Furthermore, we find that negative
response is log-enhanced in the ballistic regime by the physics related to the seminal Dorfman-Cohen
log divergence due to memory effects in the kinetics of dilute gases. The ballistic regime therefore
offers a unique setting for exploring these interesting effects due to electron interactions.

Electron interactions can alter transport characteris-
tics of solids in a variety of interesting ways[1]. In par-
ticular, electron systems in which momentum-conserving
ee collisions dominate transport are expected to ex-
hibit collective hydrodynamic flows[2–5]. Viscous elec-
tron fluids can harbor interesting collective behaviors
akin to those of classical fluids[6–15]. Manifestations of
electron hydrodynamics, predicted theoretically, provide
guidance to experiments that attempt to demonstrate
this regime[16–18]. One such manifestation, discussed
recently[14, 16], is the “negative resistance” response i.e.
current-induced electric field that builds in the direc-
tion against the applied current. In Ref.[14] negative
resistance was predicted to arise naturally as the rate
of momentum-conserving collisions exceeds the rate of
momentum-relaxing collisions and the system transitions
from the ohmic regime to the hydrodynamic regime. In
Ref.[16] its observation was used as a signature of the hy-
drodynamic regime, taking it for granted that negative
resistance is a fingerprint of the hydrodynamic regime.
However, so far the smoking-gun status of this response
has not been critically analyzed.

Here we show that negative resistance can occur not
only in the hydrodynamic regime, when the ee collision
mean free path lee is the smallest lengthscale in the sys-
tem, but also in the ballistic regime, when lee is much
greater than the lengthscales at which the system is be-
ing probed. This behavior is illustrated in Fig.1. As a
result, negative resistance, taken alone, does not distin-
guish the hydrodynamic and ballistic regimes. Further-
more, the negative response value in the ballistic regime
exceeds that in the hydrodynamic regime, which puts
certain limitations on using this quantity as a diagnos-
tic of hydrodynamics. However, the two regimes can be
distinguished by the temperature and carrier density de-
pendence of the response. As discussed below, the re-
sponse strength grows with temperature in the ballistic
regime and decreases in the viscous regime. Likewise, it
shows different dependence on doping in the two regimes.

FIG. 1. Particles injected into an electron system from a
current source (blue) undergo collisions with particles in the
system bulk (red). The change in particle distribution is de-
tected by a voltage probe at a distance r from the source,
which measures particle flux into the boundary. The signal,
dominated by ee interactions, is strongest at the distances
smaller than the ee collision mean free path, d � lee. Panel
(a) illustrates the mechanism of negative response: collisions
between injected particles 1, 1′, 1′′ and background particles
2, 2′, 2′′ prevent some of the latter (2′, 2′′) from entering the
probe contact. Panel (b) shows the predicted dependence of
the probe potential vs. distance.

These dependences, which are strikingly different in the
two regimes, can provide guidance in delineating them in
the existing[16, 19, 20] and future experiments.

The origin of negative resistance can be understood
most easily by considering transport in the halfplane ge-
ometry wherein particles are injected from a point source
placed at the boundary as shown in Fig.1a. In this
case there are two competing contributions to be con-
sidered. First, the injected particles, after colliding with
the background particles, can be reflected into voltage
probe which measures particle flux into the boundary.
This produces a positive contribution to the measured
voltage response. Second, the same collision processes
also prevent some of the background particles from en-
tering the probe, producing a negative contribution to
the measured signal. We will see that the latter effect
dominates, resulting in the net signal of a negative sign.
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FIG. 2. Schematic illustration of different contributions to the
nonlocal voltage response, arising in perturbation expansion
of the solution of the transport equation, Eq.(4), in the ee
collisions rate. Panels (a), (b) and (c), illustrate the 1st,
2nd and 3rd terms, respectively. The dominant contribution,
which is of a negative sign, arises from the 2nd term (see text).
In addition to the processes shown, an important contribution
arises from the processes in which background particles are
scattered away and prevented from entering the probe. Such
“ghost” processes produce negative flux into the probe. These
processes are pictured in Fig.1a (particles 1′, 2′ and 1′′, 2′′).

Interestingly, when the ee mean free path lee is greater
than the distance between the source and the probe d,
all the lengthscales d < r < lee contribute equally to the
response. That is, the negative response is dominated
by particles making a large excursion at r > d before
returning to the probe. In this case we find the behavior

V (d) ∼ −J0γee ln
lee
d
, (1)

where J0 is the injected current and γee is the ee collision
rate. As a function of distance, the response grows as
d decreases, diverging as d/lee → 0. This dependence is
illustrated in Fig.1b. In contrast, it falls off and becomes
very small at large d, remaining negative in both the
hydrodynamic regime d� lee and in the ballistic regime
d � lee. Taken as a function of distance to the probe,
the negative response is typically stronger in the ballistic
regime than in the viscous regime.

The log enhancement arises due to a large phase space
of contributing trajectories, which make long excursions
to the distances up to lee and then are scattered back to
the probe, as illustrated in Figs.1 and 2b. The long excur-
sion times as well as the near-backscattering geometry of
these trajectories give rise to strong magnetoresistance
at anomalously weak magnetic fields. Estimates given
below indicate that the threshold field values correspond
to cyclotron radii on the order Rc ∼ l2ee/d � lee, which
can exceed typical sample dimensions.

The origin and behavior of the negative response bears
strong resemblance to the seminal memory effects due to
multiple correlated collisions in kinetic theory, discovered
by Dorfman and Cohen, and others[21, 22]. This work
made a surprising observation that virial expansion of the
kinetic coefficients in gases breaks down due to multiple
correlated collisions between two particles mediated by a

third particle, which involve large excursions and log di-
vergences similar to those found here. Manifestations of
such memory effects, discussed so far, involved long-time
power-law correlations in gases[23, 24]. Here, instead of
three correlated collisions, similar effects arise from a sin-
gle collision, with the current source and voltage probe
playing the role of two other collisions. One can therefore
view the log enhancement in Eq.1 as a direct manifesta-
tion of the memory effects predicted in kinetic theory.

Our transport problem can be readily analyzed with
the help of the quantum kinetic equation

(∂t + v∇− Iee) δf(r,p) = Jr,p, Jr,p = J0δ(r). (2)

Here δf(r,p) describes particle distribution weakly per-
turbed near equilibrium. We assume T � εF , in which
case perturbed distribution is localized near the Fermi
level and δf(r,p) can be parameterized as a function on
the Fermi surface through the standard ansatz

δf(r,p) = −∂f0
∂ε

χ(θ), χ(θ) =
∑
m

χme
imθ, (3)

with f0 the equilibrium Fermi-Dirac distribution and θ
the angle parameterizing the Fermi surface. Due to cylin-
drical symmetry, the ee collision operator is in general di-
agonal in the angular harmonics basis (see below). The
quantity Jr,p represents a current source placed at r = 0.
For conciseness, we ignore the angular anisotropy of the
injected distribution.

The general solution of this equation is given by a for-
mal perturbation expansion in the collision term

δf(r,p) = DJr,p+DIeeDJr,p+DIeeDIeeDJr,p+ ... (4)

where D = (δ+v∇)−1 is the Liouville propagator. Here,
to describe a steady state, an infinitesimal positive δ was
added in place of ∂t to ensure that the steady-state re-
sponse obeys causality. The collision processes described
by this series are illustrated in Fig.2. The first term rep-
resents particles moving freely away from the source:

δf1(r,p) =

∫ ∞
0

dtδ(2)(r− vt)J0, (5)

where t is an auxiliary time parameter arising from
solving transport equations as δf1 =

∑
k e

ikr J
δ+ikv =∑

k

∫∞
0
dteik(r−vt)J . The particles described by Eq.(5)

never make it to the probe (Fig.2a). Other terms in
Eq.(4) can also be evaluated in a similar manner. The
second term describes injected particles scattered once
by the background particles (Fig.2b), giving

δf2(r,p) =
∑
r′,t,t′

δ(2)(r− r′−vt)σ(θ)δ(2)(r′−v′t′)J0, (6)

where
∑

r′,t,t′ denotes
∞∫
0

∞∫
0

dtdt′
∫
d2r′, and the “scatter-

ing crosssection” σ describes the change of the distribu-
tion due to a scattering event. The crosssection depen-
dence vs. the angle between the incoming and outgoing
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velocities θ (see Fig.2b) can be inferred from the form
of the collision operator Iee. For illustration, here we
consider the simplest one-rate model of Iee in which all
nonconserved harmonics relax at equal rates,[4, 15]

Ieeδf = −γee (δf − 2p̂ · 〈p̂′δf ′〉θ′ − 〈δf
′〉θ′) , (7)

where the average 〈...〉θ′ is over p′ angles; δf and δf ′ is
a shorthand for δf(p, r) and δf(p′, r), respectively. The
last two terms in Eq.(7), which ensure momentum and
particle number conservation, give the angle dependence

σ(θ) = γee(1 + 2 cos θ). (8)

The two terms in this expression have very different
meanings: the first, isotropic, term describes addition
of an incident particle after its velocity is randomized by
collision, the second term describes momentum recoil of
the background particles as a result of scattering.

Crucially, the crosssection θ dependence in Eq.(8) is
such that σ is positive at small θ but is negative in an
interval of size 2π/3 which includes the scattering angle
θ = π. The contribution of this process to the flux into
the probe is dominated by the values θ ≈ π − O(d/r).
This contribution originates from scattering processes at
relatively large distances from the injector r � d, giving
a negative value which is log-enhanced:

δV ∼ J0
∫ ∞
d

d2r′

r′2
e−r

′/leeσ(θ ≈ π) ∼ −J0γee ln
lee
d
. (9)

The log factor is large in the ballistic regime lee � d.
The textbook estimate γee ∼ T 2/ε2F , where R∗ is the

effective Rydberg constant near εF and b is a numer-
ical factor of order unity, indicates that the response
grows with temperature and decreases with carrier den-
sity. This is in contrast to the negative response in the
hydrodynamic regime, which is proportional to viscos-
ity and thus scales inversely with γee[14]. The opposite
signs of the dependence vs. temperature and carrier den-
sity may help distinguish the ballistic and hydrodynamic
negative response types.

Higher-order terms in Eq.(4) describe multiple scatter-
ing. E.g. the third term gives a contribution to particle
flux into the probe of the form (Fig.2c):

J0γ
2
ee

∫ ∫
d2r1d

2r2e
−L//lee

|r1||r2 − r1||r3 − r2|
∼ γeeJ0, (10)

where L = |r1|+ |r2−r1|+ |r3−r2|. This contribution is
non-divergent in the limit a� lee, and thus is subleading
to the second term by a log factor.

By a similar dimensional argument one can show that
nth order terms gives contributions

J0γ
n
ee

∫
...

∫
d2r1d

2r2...d
2rn

|r1||r1 − r2|...|rn − rn−1|
∼ γnee

l2nee
ln+1
ee

∼ γee.

(11)

This behavior of higher-order terms, featuring identical
scaling with γee, simply means that perturbation expan-
sion is ill-defined and cannot be used to evaluate the re-
sponse outside the ballistic regime. As noted above, the
log divergence of the second term and the power-law di-
vergence of higher-order terms are related to the seminal
divergences found in the breakdown of the virial expan-
sion in kinetic theory due to memory effects in multiple
correlated collisions[21, 22].

We now proceed to show that the nonlocal resistance
also remains negative outside the ballistic regime, that is
at large distances r � lee. To describe this regime we
need to incorporate boundary scattering into the model.
Momentum relaxation at the boundary is usually de-
scribed by diffuse boundary conditions, leading to a cum-
bersome mathematical boundary value problem. Instead,
to simplify the analysis, here we extend particle dynam-
ics from the halfplane to the full plane, and model mo-
mentum relaxation on the line y = 0 through adding an
additional term to the collision operator as

Iee → Iee + Ibd, Ibdδf = −αδ(y)P ′δf. (12)

Here P ′ is a projection on the harmonics m = ±1:
P ′δf = 2p̂ · 〈p̂′δf(p′)〉p′ . The limit α → ∞ is expected
to mimic the no-slip boundary conditions. Carrier distri-
bution induced by an injector is described by

(v∇− Iee + α(r)P ′)δf(r,p) = J0δ(r). (13)

The solution of this transport problem can be obtained
in Fourier representation δf(r,p) =

∑
k e

ikrδfk(r):

(ikv−Iee+α̂P ′)δfk(r) = J0, 〈k|α̂|k′〉 = αδk1−k′1 , (14)

where the delta function δk1−k′1 reflects translational in-
variance of the line y = 0 in the x direction.

Next, we transform to the angular harmonics basis (3).
We formally solve Eq.(14) by a perturbation series in α:

|δf〉 = (G−Gα̂G+Gα̂Gα̂G− ...) |0〉 J0, (15)

where, G = 1/(ikv − Iee) is the free-space Greens func-
tion, |0〉 denotes the m = 0 angular harmonic. For con-
ciseness, we absorb P ′ into α̂ and suppress the ∂f0/∂ε
factor. The first term represents a solution of Eq.(14) for
a point source in free space and no momentum relaxation,
α = 0. Other terms describe scattering at the line y = 0.
Because of P ′ projection, every encounter with the line
generates a contribution of the form eiθ + e−iθ = 2 cos θ.
We can therefore replace Eq.(15) by an equivalent free-
space problem with a line source

(ivk cos(θ − θk)− Iee) |δf〉 = J0(1 + wk12 cos θ). (16)

Here θ is the velocity angle and θk is the vector k angle,
k1 + ik2 = keiθk . The term 1 represents the original
point source at r = 0; the terms wk1e

±iθ represent a
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source distributed on the y = 0 line (no k2 dependence).
The weights wk1 are evaluated in the Supplement.

In the basis (3), the transport problem (16) is repre-
sented as a system of coupled equations

ikv

2

(
eiθkχm+1 + e−iθkχm−1

)
+ γmχm = Jm, (17)

where γm are the eigenvalues of the operator Iee, which
is diagonal in the basis (3), and Jm take values J0 and
wk1J0 for m = 0,±1 and zero otherwise. Here we used
the identity cos(θ − θk) = 1

2 (ei(θ−θk) + e−i(θ−θk)), inter-
preting the factors e±iθ as shift operators m→ m∓ 1.

In our one-rate model the eigenvalues of Iee are γm =
γee for |m| > 1, and zero otherwise. We will now show
that in this case the coupled equations, Eq.(17), have a
solution with the m dependence of an exponential form

χm = e−imθk ×


c1(−iz)m−1, m > 0
c0, m = 0
c−1(−iz)−(m+1), m < 0

(18)

with |z| < 1. Plugging it into Eq.(17) with any m 6= 0,±1
gives an algebraic equation vk

2

(
z − z−1

)
+ γee = 0. This

equation is solved by

z = e−λ, sinhλ =
γee
kv
. (19)

The m = ±1 and m = 0 equations are

c0 − izc±1 = e±iθkwk1
2J0
ikv

, c1 + c−1 =
2J0
ikv

. (20)

These equations give values

c0 = J0
2wk1 cos θk + iz

ikv
, c±1 = J0

z ∓ 2wk1 sin θk
ikvz

.

(21)
The full distribution can now be evaluated by carrying
out the sum over m. This gives a closed-form expression

δfk(θ) = c0 +
c1e

i(θ−θk)

1 + izei(θ−θk)
+

c−1e
−i(θ−θk)

1 + ize−i(θ−θk)
(22)

where the three terms represent the contributions of the
harmonics m = 0, m > 0 and m < 0, respectively.

We model the voltage probe as a small slit which mea-
sures the incoming particle flux (for geometry, see Fig.1):

V (d) =
ew

G
F, F =

∫ 0

−π

dθ

2π
v sin θχ(r, θ), (23)

where the integration limits −π < θ < 0 select particles
which are incident on the boundary. Here w is the slit

width, e is electron charge, G = 4 4e2

h
2w
λF

is the slit con-
ductance. Particles incident at an angle θ contribute to
the flux with the weight v sin θ.

We evaluate voltage on the probe, Eq.(23), using the
carrier distribution (22), Fourier transformed to real

space. The flux for the distribution (22) can be analyzed
by summing the contributions of different harmonics with
the help of the identity

0∫
−π

dθ

2π
v sin θeimθ =


v

π(m2−1) , m even

± iv4 , m odd,m = ±1
0, m odd,m 6= ±1

. (24)

The resulting response, illustrated in Fig.1b, is negative
in both the ballistic and the hydrodynamic regimes. It is
more negative in the ballistic regime, d� lee, than in the
hydrodynamic regime, d� lee. Therefore, the sign of the
response does not distinguish between the two regimes.
However, since in the ballistic regime the response scales
as γee, whereas in the hydrodynamic regime it scales as
γ−1ee , the temperature and density dependence will be of
opposite signs in the two cases, providing a clear distinc-
tion between the two regimes.

For monolayer graphene the negative response of bal-
listic electrons, derived above, is proportional to λF γee ∼
T 2/n, decreasing with n and growing with T . Yet, for a
viscous flow the response is proportional to η/n2, where
η is viscosity. The estimate η = nmvF lee/4 then predicts
a density-independent response. Interestingly, the exper-
imentally measured response decreases with n and grows
with T at not-too-high temperatures[16], resembling the
behavior expected for ballistic electrons.

Furthermore, the negative response is enhanced in the
ballistic regime, owing to the large phase space of con-
tributing trajectories that span the lengthscales d < r <
lee. As discussed above, there is an interesting anal-
ogy between this enhancement and the memory effects
in multiple correlated collisions, which lead to the break-
down of the virial expansion in dilute gases[21–24]. Such
memory effects can be directly probed in our system by
applying a magnetic field. The required field values are
very small: the threshold field, above which the response
is suppressed, corresponds to large cyclotron radius val-
ues Rc ∼ l2ee/d that can exceed a typical sample size.

For an estimate, taking lee = 1µm and d = 100 nm
(and assuming a typical graphene carrier density of n ∼
1012 cm−2) gives Rc ∼ 10µm. This corresponds to very
small field values of about B . 10 mT above which the
negative response will be altered significantly. These val-
ues are much smaller than the characteristic field scale
for the free-particle magnetotransport, for which Rc must
be on the order of sample dimension. Strong magne-
toresistance at weak magnetic fields arises because the
trajectories contributing to the negative response origi-
nate from near-backscattering processes (see Fig.1 and
2b). Such trajectories are easily deflected away from the
probe even by a weak B field such that its cyclotron
radius Rc ∼ l2ee/d is much greater than the lee and d
lengthscales. The ballistic regime in combination with
magnetotransport therefore provides an ideal setting in
which these effects due to electron interactions can be
realized and explored.
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