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We investigate a physical divergence of the third order polarization susceptibility representing
a photoinduced current in biased crystalline insulators. This current grows quadratically with
illumination time in the absence of momentum relaxation and saturation; we refer to it as the jerk
current. Two contributions to the current are identified. The first is a hydrodynamic acceleration
of optically injected carriers by the static electric field, and the second is the change in the carrier
injection rate in the presence of the static electric field. The jerk current can have a component
perpendicular to the static field, a feature not captured by standard hydrodynamic descriptions
of carriers in electric fields. We suggest an experiment to detect the jerk current and some of its
interesting features.

Introduction.- The dynamics of electrons in electric and
magnetic fields gives rise to many novel condensed mat-
ter phenomena. Bloch electrons in a static electric field,
for example, acquire an ’anomalous’ contribution to their
Bloch velocity which leads to the anomalous Hall effect of
ferroelectric metals [1]. For slow and nearly homogeneous
fields the semiclassical equations of motion provide an
accurate description of electron dynamics in metals [2].
Insulators, on the other hand, lack a Fermi surface and a
static electric field alone will not generate a steady state
current.

A large dc-current can be generated in an insulator by
an optical field alone, e.g., via the so-called bulk pho-
tovoltaic effect (BPVE). Its name derives from the fact
that there is no need for barriers or interfaces, such as
pn junctions, to generate it. Injection [3] and shift cur-
rents [4] are examples of the BPVE. Intuitively, injection
current is generated by the asymmetry in carrier injec-
tion at time-reversed crystal momenta in the Brillouin
zone (BZ). Shift current, on the other hand, arises from
the displacement of charge in real space during the pro-
cess of photon absorption. Both of these are second order
effects in the optical electric field and can also be under-
stood as physical divergences of the second order electric
polarization susceptibility [5].

The situation when both an static electric field and
optical field are simultaneously present has received less
attention. The description of photocurents when both
a static and an optical field are present [6, 7] usually
involves the assumption that the carrier injection is solely
due to the optical field, e.g., given by Fermi’s Golden
Rule, and that injected carriers are then accelerated by
the static electric field. However, this description is not
complete, as the carrier injection rate itself is affected by
the static field.

In this Letter we reexamine photocurrents in the pres-
ence of static field from the perspective of nonlinear op-
tical susceptibilities [5]. This approach starts from a mi-
croscopic model of non-interacting Bloch electrons per-

turbed by an electric field. By studying the leading di-
vergence of χ3 (to be defined below), we find a dc-current
that grows quadratically in time, in the absence of mo-
mentum relaxation. We dub it the jerk current, by anal-
ogy with the use of the word ‘jerk’ to describe the second
derivative of the velocity of a classical particle. We also
provide a general expression in terms of microscopic pa-
rameters of the material which is suitable for ab-initio
numerical calculations.

To make contact with the semiclassical description we
rederive the same results from a simpler phenomenolog-
ical model of electron wavepackets interacting with light
in a static electric field. This perspective allows us to
identify two physically distinct contributions. One arises
from the carrier’s acceleration, as in the semiclassical de-
scription, and a second which arises from the change of
the charge carrier injection rate in the presence of a static
electric field. This last contribution is completely absent
in the usual semiclassical approach.

The jerk current has key differences with other pho-
tocurrents studied previously. First, for time scales
shorter than the momentum relaxation time, and in
absence of saturation effects, the jerk current grows
quadratically with time of illumination, in contrast to
the injection current, which grows linearly with time, and
the shift current, which is constant. Second, and more
important, the jerk current can yield a current perpen-
dicular to the static field. In metals, the Berry curvature
of the Fermi surface can lead to a transverse conductiv-
ity, e.g., in the anomalous Hall effect, but in insulators
without nontrivial Berry curvature [8] such transverse
conductivity is highly unusual. In the standard semi-
classical approach the current would flow parallel to the
electric field [7].

Physical divergence in susceptibility. The jerk current
is described by a divergence in the third order suscep-
tibility χabcd3 (−ωΣ, ωβ , ωσ, ω∆) when one of the exter-
nal frequencies is zero. Superscripts indicate Cartesian
components, ωβ , ωσ and ω∆ the frequencies of external
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electric fields, and ωΣ is the sum of external frequen-
cies. The optical electric field is taken to be uniform,
Eb(t) = Ebωe

−iωt + Eb−ωe
iωt. Summation over repeated

Cartesian indices will be implied. Both the intraband
(χ3i) and interband parts of χ3 have been calculated be-
fore for free Bloch electrons [9]. In the limit where ωΣ

vanishes, ωβ = ω, ωσ = −ω, and ω∆ = 0 (static field)
we obtain (see supplementary information (SI))

limωΣ→0 (−iωΣ)3ε0χ3i = ι3, (1)

where ι3 is finite and vanishes for photon energies smaller
than the energy gap; ε0 is the permitivity of free space,
and we use a notation for χ3 and ι3 which agrees with
the standard notation of susceptibilities [10]. Since the
current density and macroscopic polarization are related
by

dP a

dt
= Ja, (2)

where Ja is the current density and P a the macroscopic
polarization of the insulator, ι3 identifies a current given
by

d2J
a(3)
jerk

dt2
= 6ιabcd3 (0, ω,−ω, 0)EbωE

c
−ωE

d
0 , (3)

where Ed0 is a static external field, and the factor of
3! = 6 arises because the response coefficients such as
ι3 and χ3 are defined to be symmetric under pairwise ex-
change of frequency and Cartesian components [10]. For
times shorter than the momentum relaxation time and
neglecting any saturation effects, Eq. 3 implies that the
jerk current grows with time of illumination as

|J(3)
jerk| ∼ ι3t

2. (4)

An explicit calculation (see SI) of ιabcd3 (0, ω,−ω, 0) gives

ιabcd3 =
2πe4

6~3V

∑
nmk

fmn
[
2
∂2ωnm
∂kd∂ka

rbnmr
c
mn

+
∂ωnm
∂ka

∂

∂kd
(rbnmr

c
mn)

]
δ(ωnm − ω),

(5)

where e = −|e| is charge on the electron and 2π~ is
Planck’s constant. Here ~ωnm = ~ωn − ~ωm is a band
energy difference at crystal momentum k, and fnm =
fn − fm are the occupation differences of bands n,m.
The usual dipole matrix elements are denoted by rnm
which by definition vanish for m = n. The sums run over
all bands n,m and the integration is over all the BZ, with
V the sample volume.

Using rnm(−k) = rmn(k), which can be assumed
when there is time reversal symmetry in the unper-
turbed state, it is easy to show that [ιabcd3 (0, ω,−ω, 0)]∗ =
ιacbd3 (0, ω,−ω, 0) = ιabcd3 (0,−ω, ω, 0) = ιacbd3 (0,−ω, ω, 0),

and hence ι3 is real and symmetric in the indices b, c.
Since ι3 is a four rank tensor and hence is nonzero in
materials with or without center of inversion. Interest-
ingly, tensor components where a is perpendicular to d
lead to current perpendicular to the static electric even
in systems with rotational symmetry.

The longitudinal jerk current can be generated in any
material by linearly or circularly polarized, and by unpo-
larized light. The transverse jerk current, on the other
hand, can be generated in any material by linearly polar-
ized light. Unpolarized and circularly polarized light do
not necessarily generate a transverse jerk. For example,
a zincblende semiconductor grown along the [100] axis il-
luminated by circularly or unpolarized light will not sup-
port a transverse jerk current for fields perpendicular to
the growth direction. Also, the helicity of circularly po-
larized light does not change the jerk current, which is a
consequence of the symmetry of the jerk current tensor
ιabcd3 on the ’bc’ indices.

Two terms contribute to the jerk current. The first
term depends on the curvature of the bands or alter-
natively, the inverse mass tensor at k-points in the BZ.
The second term depends on the momentum derivative of
the product of transition matrix elements rbnm and rcmn.
In general both terms contribute to the current parallel
and perpendicular to the static field. From the expres-
sion shown in Eq. 5 the physical origin of these terms,
and whether or not they have analogs in the semiclas-
sical picture, is not clear. To reveal the connection we
now construct a simple phenomenological model where
the physics becomes more transparent.
Phenomenological model.- Consider an electron

wavepacket in band n centered at k. The velocity of the
wave packet is va = ∂ωn/∂k

a. In the presence of a static
electric field the wavevector of the electron obeys

d~k
dt

= eE0 = −e∂A
∂t

, (6)

where the vector potential, A, is used to describe the
static electric field. If the initial value of k is k0 then
k = k0 − eA/~ gives an expression for the velocity as a
function of A. Expanding in powers of A and taking a
time derivative gives (to first order in the electric field)

dva

dt
=
e

~
∂2ωn
∂ka∂kd

Ed0 . (7)

This is the initial acceleration right after the field is
turned on. For longer times higher order terms will be
important. We assume the system is gapped with all
valence bands initially filled and all conduction bands
empty. Now the current density is given by

Ja =
e

V

∑
nk

fnv
a
n, (8)
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and, if there is a static electric field, it vanishes because
the dispersion relations are periodic over the BZ. Taking
a time derivative we obtain

dJa

dt
=

e

V

∑
nk

(
dfn
dt
van + fn

dvan
dt

)
. (9)

If a static electric field is present it will accelerate elec-
trons within the same band but will not excite them
across the energy gap (i.e., dfn/dt = 0). Then using
Eq. 7 we have

dJa(1)

dt

∣∣∣∣
dc

=
e2

~V
∑
nk

fn
∂2ωn
∂ka∂kd

Ed0 , (10)

which vanishes again, because the dispersion relations are
periodic. That is, although in this simple picture each
electron accelerates, the net change in current density
vanishes because the accelerations add to zero. Note that
this holds no matter how many terms we would keep in
the expansion of Eq. 7, since only more derivatives of ωn
would arise. Hence, applying a static electric field alone
does not lead to a current at this level of description.
There will be a polarization induced as the field is turned
on and there will be a current associated with the rise of
the polarization, but that is not captured by this simple
description. In calculating the current, then, if the static
field is on for a long time we can simply assume filled
bands when an optical field is turned on. An incident
optical field will produce electron-hole pairs and a one-
photon absorption calculation is appropriate. The state
of the system will be of the form

|Ψ〉 = |GS〉+
∑
cvk

γcva
†
cav|GS〉+ · · · , (11)

where n = c, (v) runs over the conduction (valence)
bands, |GS〉 is the ground state of the system with all
valence bands filled and conduction bands empty, and
γcv is the amplitude for the state c to be occupied and
v to be empty (at crystal momentum k); an (a†n) is de-
struction (creation) operator of Bloch electrons in band
n. The standard Fermi’s Golden Rule calculation gives
the transition rate as

d|γcv|2

dt
= 2π| ie

~ω
vbcvE

b
ω|2δ(ωcv − ω) (12)

=
2πe2

~2
rbvcr

c
vcE

b
ωE

c
−ωδ(ωcv − ω), (13)

where we used standard identities racv = vacv/iωcv and
(vacv(k))∗ = vavc(k). Alternatively, if we let fv be the
occupation of the valence band v and fc the occupation
of the conduction band c, then their rate of change is

dfc
dt

=
∑
v

d|γcv|2

dt
,

dfv
dt

= −
∑
c

d|γcv|2

dt
. (14)

If there were no static electric electric applied we have
dvan/dt = 0, and from Eq. 9 and Eq. 14 we recover

dJa(2)

dt

∣∣∣∣
op

=
2πe3

~2V

∑
cvk

(van − vam)rbvcr
c
cvδ(ωcv − ω)EbωE

c
−ω,

(15)

which is the standard injection current expression [5].
The injection current will vanish if the crystal is cen-
trosymmetric because it is governed by a third rank ten-
sor. But now let us assume there is a dc-field on when
the laser pulse arrives. We assume that over the time we
use Fermi’s Golden Rule the static electric field drives
the carriers a small fraction of the distance across the
BZ within their bands. Then we can use Eq. 7 for each
electron. Over the time of the pulse, the velocity of each
electron will change, but the sum of all velocity changes
cancels out. That need not hold true when we move elec-
trons from one band to another. To see this, take the
time derivative of Eq. 9 to obtain

d2Ja

dt2
=

e

V

∑
nk

(
d2fn
dt2

van + 2
dfn
dt

dvan
dt

+ fn
d2van
dt2

)
. (16)

One can show that the last term is of second order in Ed0 .
Then, using Eq. 7 and Eq. 14 we have, to linear order in
Ed0 ,

d2Ja(3)

dt2
=

2πe4

~3V

∑
cvk

2
∂2ωcv
∂kd∂ka

rbvcr
c
cvδ(ωcv − ω)EbωE

c
−ωE

d
0

+
2πe4

~3V

∑
cvk

∂ωcv
∂ka

∂(rbvcr
c
cv)

∂kd
δ(ωcv − ω)EbωE

c
−ωE

d
0 ,

(17)

in agreement with Eq. 5. An important point of this
calculation is to show that the second term in Eq. 5
comes from changes in the transition rate d2fn/dt

2 due
to a static field. This contribution is not captured by
the semiclassical approach [7]. The term proportional to
dv/dt in Eq. 16 is the classical acceleration of carriers in
the presence of the static field and gives rise to the first
term in Eq. 5.
An example.- A key signature of the jerk current is that

it can have a photocurrent perpendicular to the static
electric field. We now estimate the order of magnitude
of the jerk current perpendicular to the static field in a
standard model of single-layer transition metal dichalco-
genides [11] (TMDs). The model describes the carriers
near the band edges where they behave as gapped Dirac
fermions constrained to move in two valleys v = ±1 (not
to be confused with valence band index) for each spin
component s = ±1. The Bloch Hamiltonian for TMDs
has 4 bands and is given by

Hvs =
~
2
λvsσ0 + ~γ(vkxσx + kyσy) +

~
2

(∆− λvs)σz,
(18)
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FIG. 1. (a) setup for measuring jerk current parallel and
perpendicular to the static electric field. (b) The unit cell of
single-layer transition metal dichalcogenide WS2 and its xy
projection. (c) Jerk current response coefficients for WS2 near
the band edges. The model is shown in Eq. 18. Independent
components are shown per valley. There is a nonzero current
perpendicular to the static field given by the xxyy component
which is about an order of magnitude smaller that the other
components. The dashed line indicates the contribution to
the yyxy component from the v = 1 valley; the contribution
to this component from the v = −1 valley is of the opposite
sign.

where σi, i = x, y, z are usual Pauli spin matrices and σ0

is the unit matrix. The parameters γ,∆, and λ [11] for
MoS2 are ~γ = 3.5 ÅeV, ~λ = 0.075 eV, ~∆ = 1.7 eV and
for WS2, ~γ = 4.38 ÅeV, ~λ = 0.21 eV, ~∆ = 1.79 eV.
In Fig. 1 we have plotted the independent components of
ι3 for WS2 per valley (summed over spin).

The tensor component xxxx and xyyx (same first and
last Cartesian components) describe the standard current
generated parallel to a static electric field. These tensors
components are, in general, of equal order of magnitude.
A novel feature is the generation of current transverse to
the static electric field, which is described by the tensor
component xxyy (= xyxy), and arises when the incident
light is linearly polarized with finite components both
parallel and perpendicular to the direction of the static
electric field. The tensor component yyxy vanishes when
the contributions from all the valleys are included. How-
ever, the contribution from each valley is nonzero, and
in Fig. 1 we plot the contribution from the v = 1 valley.

With circularly polarized incident light, we would inject
a pure valley current, which could be observed with spa-
tially resolved circularly polarized probes

The jerk current could also be measured in transport
experiments, by terahertz (THz) spectroscopy or in pump
probe experiments. These techniques have been used pre-
viously to measure injection and shift currents in various
materials [12–17]. Here we propose a THz experiment
where an insulator is placed in a strong electric field and
current is measured perpendicular to the static field. The
direction of the jerk current can be inferred from the po-
larization of the THz radiation.

To estimate the actual current generated we adopt
a simple relaxation-time approximation. Let a pulse
of duration τ ∼ 100 fs and amplitude Exω = Eyω =
107/
√

2 V/m be incident of a sample with static elec-
tric field along the x-axis of magnitude E0 = 106

V/m. Then the photocurrents parallel and perpendic-
ular to the static field are estimated to be Jxjerk ≈
(ιxxxx3 + ιxyyx3 )τ2|Eω|2E0 ≈ 55 A/m and Jyjerk ≈ (ιyyxx3 +

ιyxyx3 )τ2|Eω|2E0 ≈ 8 A/m which is within experimental
reach [13].

Conclusions.- We have predicted the existence of a
novel photocurrent in insulators. It grows quadratically
with illumination time until the onset of momentum re-
laxation or saturation. We showed that the origin of this
time dependence has two physical contributions. One is
the acceleration carriers in a static electric field, a phe-
nomenon captured by the hydrodynamic description of
carriers in a static field. The second is the change in
the carrier injection rate in the presence of a static elec-
tric field. They are both associated with the physical
divergence of the third-order nonlinear susceptibility χ3.
The susceptibility approach to this problem allowed us
to give a general expression for the jerk current in terms
of material parameters which is also suitable for ab-initio
calculations.

We have pointed out that the jerk current has a com-
ponent transverse to the static electric field, a property
that is not captured by the hydrodynamic equations of
motion of carriers in an electric field. Such an effect could
be readily measured in, e.g., TMD and we suggested an
experiment to do so. Besides introducing a novel opti-
cal effect, our results point out a strategy for controlling
currents via optical and static electric fields.
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