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The dynamo effect is a class of macroscopic phenomena responsible for generation and maintaining magnetic
fields in astrophysical bodies. It hinges on hydrodynamic three-dimensional motion of conducting gases and
plasmas that achieve high hydrodynamic and/or magnetic Reynolds numbers due to large length scales involved.
The existing laboratory experiments modeling dynamos are challenging and involve large apparatuses contain-
ing conducting fluids subject to fast helical flows. Here we propose that electronic solid-state materials – in
particular, hydrodynamic metals – may serve as an alternative platform to observe some aspects of the dynamo
effect. Motivated by recent experimental developments, this paper focuses on hydrodynamic Weyl semimetals,
where the dominant scattering mechanism is due to interactions. We derive Navier-Stokes equations along with
equations of magneto-hydrodynamics that describe transport of Weyl electron-hole plasma appropriate in this
regime. We estimate the hydrodynamic and magnetic Reynolds numbers for this system. The latter is a key
figure of merit of the dynamo mechanism. We show that it can be relatively large to enable observation of the
dynamo-induced magnetic field bootstrap in experiment. Finally, we generalize the simplest dynamo instabil-
ity model – Ponomarenko dynamo – to the case of a hydrodynamic Weyl semimetal and show that the chiral
anomaly term reduces the threshold magnetic Reynolds number for the dynamo instability.

The dynamo effect is a beautiful astrophysical phe-
nomenon, first proposed by Larmor in 1919 [1], that is be-
lieved to be responsible for generating and sustaining mag-
netic fields in galaxies, stars and planets including the Sun
and the Earth [2]. There exist a large variety of different dy-
namo mechanisms [2–4] that all share the same key ingredi-
ent – hydrodynamic motion of an electrically conducting gas,
fluid or plasma. The dynamo theory deals with the hydrody-
namic motion of a conductive medium focussing on the pos-
sibility of self-generating and self-sustaining magnetic fields,
whose presence has been observed in astrophysical bodies.

As detailed below, the underlying equations of the theory
are the Navier-Stokes equations, describing the hydrodynamic
motion of the medium, coupled to the Maxwell equations
of electromagnetism. In the non-relativistic limit, they give
rise to equations of magneto-hydrodynamics (MHD). These
are complicated non-linear equations, and their exact solu-
tions represent a great challenge. However, both the solu-
tions of simplified MHD models [e.g., kinematic dynamos,
with predetermined velocity fields u(r, t)] and qualitative ar-
guments [2] suggest that the dynamo action is possible when
the terms enhancing the magnetic field [e.g. the induction
term, ∇ × (u × B)] overwhelm the magnetic diffusion term,
ηm∆B (where ηm = c2/4πσ where c is the speed of light and
σ is the conductivity of the medium), which tend to suppress
the self-generation. The respective figure of merit is the mag-
netic Reynolds number [5]

Rm =
uL
ηm

= uL
4πσ
c2 , (1)

where L is the characteristic system size and u is the typical
velocity of the medium. The threshold value for a dynamo ac-
tion to commence (usually lying in the range R(cr)

m ∼ 10− 100,
with R(cr)

m ≈ 17.7 for the simplest Ponomarenko dynamo [6]
discussed below) depends on system’s geometry and is rarely
known exactly. It is clear, however, that the larger Rm, the

more likely and more effective the dynamo action. The con-
ductivity of astrophysical media vary greatly from 10−11Sm−1

for interstellar plasma to 103Sm−1 for the solar convection
shell and 105Sm−1 for the Earth’s core, but in all of these
cases the large magnetic diffusion coefficient is compensated
by literally astronomical distances resulting in large magnetic
Reynolds numbers, however small the conductivities are. By
contrast, laboratory dynamo experiments [7] deal with natu-
rally limited system sizes and use the conductivity and the
flow velocities as the only potentially tunable parameters.

Apart from large magnetic Reynolds numbers Rm � 1, the
emergence of a dynamo requires a number of other condi-
tions that need to be met. In particular, certain “no-go the-
orems” [8] have to be overcome, such as the impossibility
of a two-dimensional dynamo effect or that in a planar three-
dimensional flow (i.e., with one vanishing component of ve-
locity). Finally, it is known the dynamo action is greatly
helped by the helicity flow, which may arise either due to the
geometry of an imposed flow or due to turbulence. The lat-
ter is possible if the second figure of merit, the hydrodynamic
Reynolds number

R =
uL
ν
, (2)

where ν is the kinematic viscosity, is large. Separating both
the velocity and magnetic field into a mean-field and fluctuat-
ing component - u = u + δu and B = B + δB, and averaging
over the small-scale fluctuations results in the Krause-Rädler
equations [9, 10] of mean-field MHD, which in the simplest
case of isotropic turbulence is given by

∂B
∂t

= ∇ × (u × B) + ∇ × (αB) + ξ∆B, (3)

where the second term in the right-hand-side is the “new” he-
licity term allowed in turbulent MHD (α-effect). If the veloc-
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ity field is stationary, Eq. (3) or a similar MHD equation with-
out helicity for non-turbulent flows becomes an eigenvalue
problem for the magnetic field growth B(r, t) ∝ B(r)eγt. The
existence of exponentially growing components (Re γ > 0) in-
dicates an instability towards a self-generating magnetic field
(were the imaginary part Im γ > 0 leads to the field oscilla-
tions, which have been suggested [11] by one of the authors
to lead, e.g., to periodic cycles of solar magnetic activity).

Apart from the astrophysical context, there has been a
tremendous interest in testing the predictions of dynamo the-
ory and modeling a planetary-like or solar-like dynamo action
in the laboratory [7, 12–14]. Several impressive laboratory ex-
periments have been carried out and are currently under way
that involve setting in motion a liquid metal – sodium or gal-
lium – with the goal to achieve large Reynolds numbers to
enable the dynamo mechanism. As obvious from Eqs. (1) and
(2), this leads to the challenge of ultra-fast mechanical stirring
or rotating the liquid metal.

Here we propose that electronic solid-state systems may
provide an alternative platform for observing magnetohydro-
dynamic effects. Firstly, we list several necessary conditions
of the dynamo effect in an electronic system: (i) Transport
in the electron liquid should be governed by hydrodynam-
ics, i.e. the primary momentum relaxation mechanism should
be electron-electron collisions rather than impurity scatter-
ing. (ii) The system and the flow must be essentially three-
dimensional. (iii) Large magnetic Rm � 1 and/or hydrody-
namic R � 1 Reynolds numbers are required.

Hydrodynamic transport in solid state [condition (i)] has
been a subject of intense recent studies [15–19], both
theoretical and experimental. On the experimental side,
two widely studied platforms for hydrodynamic phenomena
are graphene [20] and Weyl semimetals (WSMs) [21–23].
Graphene, however, violates a “no-go dynamo theorem” -
condition (ii) requiring 3D flows - and is thus of no relevance
to the dynamo effect.

In what follows, we focus on magnetohydrodynamic phe-
nomena in Weyl metals (doped Weyl semimetals). We
note that in systems with the power-law quasiparticle disper-
sion [24–29] ε(p) ∝ |p|β with β 6 1, the creation of electron-
hole pairs is suppressed [30], because the energy and momen-
tum conservation laws cannot be satisfied simultaneously for
lowest-order processes. Weyl systems (β = 1) may, therefore,
often be considered as electron-hole plasma with a linear par-
ticle dispersion.

A WSM generically has an even number of nodes, accord-
ing to the fermion-doubling theorem [31], and electrons and
holes near different nodes often behave as independent liq-
uids. However, simultaneous application of external electric
E and magnetic B fields results in the quasiparticle trans-
fer from one node to another (chiral anomaly[32–36]). For
simplicity, we assume in this paper that (a) the system has
only two nodes, labeled by L and R, with the same quasi-
particle dispersion, (b) the entire system is being kept at a
constant temperature T and (c) the intranodal equilibration
processes are significantly faster than the internodal particle-

transfer processes. This allows one to define the chemical po-
tentials µα near each node α = L,R and the hydrodynamic
velocity u of the Weyl fluid. The distribution function of
the linearly-dispersing quasiparticles near each node in the
absence of electromagnetic fields is given by [37] fα(k) ={
exp

[
γ(u) (±vF |k| − µα − u · k) /T

]
+ 1

}−1, where “+” and “-
” refer, respectively, to the conduction and valence bands;

γ(u) =
(
1 − u2/v2

F

) 1
2 ; and γ(u) (±vF |k| − µα − u · k) is the

quasiparticle dispersion in the reference frame of the moving
electron liquid.

The dynamics of charge densities ρα near node α, where
α = L,R, are described by the continuity equations

∂tρα + ∇ · jα − χα
ge3

4π2~2c
E · B +

ρα − ρᾱ
τin

= 0, (4)

where χL = −1 and χR = +1 are the “chiralities” of quasipar-
ticles near nodes L and R and g accounts for spin and possibly
additional valley degeneracy; ᾱ labels the node other than α;
hereinafter e = −|e|. The first two terms in Eq. (4) match the
usual continuity equation for a liquid with density ρα; the third
term (∝ E ·B) accounts [35, 36] for the change of the electron
concentration at node α due to the chiral anomaly; and the
last term in Eq. (4) describes internodal scattering, e.g., due to
short-range-correlated quenched disorder, with the internodal
scattering time τin. The electric currents jL,R of the charge
carriers near the two nodes are given by

jα =
∑
β

σαβ

[
E +

1
c

u × B −
1
e
∇µβ

]
− χα

ge2

4π2~2c
Bµα, (5)

where α, β = L,R; µα is the chemical potential near node α,
and u is the hydrodynamic velocity of the Weyl fluid. In this
paper we assume that the imbalance of the chemical potentials
between the nodes, if any, is small |µL − µR| � |µL,R|,T . The
diagonal components σLL = σRR of the conductivity tensor
σαβ describe the response of charge carriers near each node
to the electromagnetic field; the off-diagonal entries σLR =

σRL account for the drag of the quasiparticles near each node
by the current near the other node. The last term in Eq. (5)
describes the chiral magnetic effect [38, 39], the generation of
the charge current by an external magnetic field in the system
in the presence of chirality imbalance, µL − µR , 0.

Equations (4)-(5), together with the relations [40]

ρR,L = ge
µ3

R,L + π2µR,LT 2

6π2v3
F~

3
(6)

for the charge density at node α and with Maxwell equations,
which involve the total charge density ρ = ρL + ρR and the
current j = jL + jR, constitute a closed system of equations
which describes charge and current dynamics of the electron
liquid in a WSM which moves with velocity u in an external
electromagnetic field. The motion of such a liquid may be
generated by the electromagnetic fields, the temperature and
chemical potential gradients, or even fast mechanical rotation
of the sample.
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To determine self-consistently the velocity field u (which
in practice is a tremendously difficult problem), the system
of Eqs. (4)-(6) has to be complemented by the Navier-Stokes
equation (derived in Supplemental Material [41])

wα

v2
F

(
∂

∂t
+ u · ∇

)
u = −∇Pα −

u
v2

F

∂Pα

∂t
+ ραE +

1
c

jα × B

+
u
3

(
∂ε

∂ρ

)
α

(
χα
ge3

h2c
E · B −

ρα − ρᾱ
τin

)
+ η∇2u + ζ∇ (∇ · u) ,

(7)

where wα = εα + Pα is the the enthalpy of the charge carriers
near node α per unit volume, with [42]

εα ≈ g
7π4T 4 + 30π2µ2

αT 2 + 15µ4
α

120π2v3
F~

3
(8)

and Pα ≈
εα
3 being, respectively, the contributions of node α

to the internal energy and pressure; the current jα is given by
Eq. (5); η and ζ are the shear and the bulk viscosities; the term
∝

(
∂ε
∂ρ

)
accounts for the change of the energy and pressure

of the Weyl liquid near node α due to the internodal scatter-
ing and the chiral anomaly, where

(
∂ε
∂ρ

)
α

=
3µα

e
µ2
α+π2T 2

3µ2
α+π2T 2 for the

case of an isothermal flow considered in this paper [see Sup-
plemental Material [41] for the discussion of the assumptions
about thermalization].

In this paper, we neglect the so-called chiral vortical ef-
fect [42], i.e. contributions to the current from the inter-
play of global rotations of the system and chirality imbalance
(µL − µR , 0). In the Navier-Stokes equation (7) we also
neglect terms of higher orders in u2/v2

F . Equations (4)-(7),
together with the Maxwell’s equations and the equations of
state, in the form of Eq. (8) and Pα =

εα
3 , constitute a closed

system of equations describing the dynamics of the electro-
magnetic fields and the electron liquid in a WSM.

Using Eqs. (5), together with the Maxwell’s equations
∇ × E = − 1

c
∂B
∂t and jL + jR ≡ j = c

4π∇ × B, where we ne-
glected the displacement current under the assumption of a
quasi-stationary flow, we arrive at the equation for the dynam-
ics of the magnetic field:

∂B
∂t

= ∇ × (u × B) +
c2

4πσ
∇2B +

ge2

4π2~2σ
∇ ×

[
(µL − µR)B

]
,

(9)

where σ = 2σLL + 2σLR is the conductivity of the WSM and
we have taken into account that the quasiparticles have the
same dispersion near the two nodes. Apart from solid-state
WSMs, an equation of the form (9) with phenomenologically
introduced coefficients describes the dynamics of ultrarela-
tivistic chiral particles [43].

Equation (9) indicates that Weyl liquids allow for the helic-
ity term for macroscopic fields without turbulence, in contrast
with the conventional α-dynamo of Krause and Rädler [9].
However, it can only appear in the presence of an already ex-
isting field, and while, as shown below, it can further enhance

magnetic field “bootstrap,” it can not lead to generation of the
field in and by itself if there is no seed field to begin with. For
that, the magnetic Reynolds number (1), Rm, has to be large
enough, as discussed in the introduction.

To estimate, Rm, we use the equation for the Coulomb-
interaction dominated conductivity of a Weyl semimetal [44]

σ ∼
e2

~

kBT
~vF

1
α2 , (10)

where the Weyl’s “fine-structure constant” is α = e2/(~vFκ)
and κ is the dielectric constant, which crucially may be rather
large. While Eq. (10) has been derived neglecting screening
effects [44], it should be adequate for estimates. For these
purposes, we have also dropped logarithmic renormalisation
factors.

FIG. 1. (Colour online) Flow regimes for the electron liquid in a
Weyl semimetal on the diagram “fine-structure constant” α = e2

κ~vF
vs. flow velocity u (log-log scale) for the room temperature T =

Troom = 300K and the Fermi velocity vF = 108 cm
s . The maximum

value of the “fine-structure constant” is αmax = e2

~vF
≈ 2.2.

Let us emphasize that the dynamo effect is a macroscopic
classical phenomenon. The effect is favoured by large system
sizes L, which lead to large Rm. In experiments with solid-
state systems the size L is rather limited, with centimeter-size
samples being at the upper end of the range accessible for
WSMs. Since the effect is not sensitive to quantum interfer-
ence effects, higher temperatures T are much preferable to
maximize Rm; the room temperature, Troom, thus represents
a reasonable comparison scale. We emphasize that even at
room temperature Weyl semimetals are not Maxwell gases
and quantum statistics and quantum nature of the electron-
electron scattering are important, but quantum coherence is
not essential for the dynamo effect. Using these length and
temperature scales, we obtain the following estimate for the
main figure of merit in the dynamo theory:

Rm ∼
1
α2

e2

~

4πkBT
~vFc2 uL ∼

10−6

α2

(
T

Troom

)
× u

[cm
s

]
L[cm],

(11)

where u is the typical velocity of the flow.
Now, we turn to estimates of the hydrodynamic Reynolds

number [2]. The viscosity of the quasiparticles in a Weyl
semimetal at temperature T may be estimated as η ∼
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n(T )Tτrel, where n(T ) is the concentration of the thermally ex-
cited quasiparticles and τrel ∼ ~(α2kBT )−1 is the momentum
relaxation time. Note that this result follows from second-
order perturbation theory in Coulomb interaction and neglects
screening effects. This leads to

η ∼
(kBT )3

α2~2v3
F

. (12)

The motion of a Weyl-semimetal liquid is turbulent in the
hydrodynamic sense when the term w

v2
F

(u · ∇)u in the Navier-

Stokes equation (7) dominates the dissipative terms ∼ η∇2u
that come from the viscosity of the Weyl fluid. This yields the
following estimate

R =
wuL
ηv2

F

∼ α2 kBT
~

uL
v2

F

∼ 4α210−3
(

T
Troom

)
× u

[cm
s

]
L[cm],

(13)

where we have used the estimate w ≈ 7gπ2T 4

90~3v3
F
∼

(kBT )4

~3v3
F

for the
specific enthalpy at high temperatures.

We note in this context that the viscosity of a Fermi liq-
uid at temperature T may be estimated as η ∼ ε5

F/(T
2~2v3

F),
where εF and vF are the Fermi energy and velocity, respec-
tively. Because the hydrodynamic Reynolds number R ∼

T 2

v2
FεF~

gets rapidly suppressed with increasing the Fermi energy
εF , topological semimetals are indeed a favourable platform
for achieving electronic turbulence as compared to “conven-
tional” hydrodynamic metals.

Naturally, the geometry and the magnitude of the velocity
field u much depends on the mechanism to stir up hydrody-
namic motion and follows from the solution of the Navier-
Stokes equations, which is a challenging task in most cases.
Furthermore, since observation of a phenomenon of this kind
has never been attempted in solid-state materials, specific
experimental techniques for achieving high hydrodynamic
flows in the most efficient way still deserve further investiga-
tion – pulsed fields (in particular orbital-angular-momentum
pulses [45] in a cylindrical geometry), crossed electric and
magnetic fields or just a rapid rotation of the sample are all
possibilities to consider. While below we consider in detail
one of the standard and simplest dynamo models, we empha-
size immediately that the estimates (11) and (13) are not pro-
hibitive; and it is conceivable that relatively large magnetic
Reynolds numbers, necessary for the dynamo to commence,
are achievable for realistic flow velocities with u of order one
kilometer/second or greater (especially considering that the
dielectric constant may be as high as κ ∼ 50 in WSMs), cf.
Fig. 1.

Now, we discuss a specific model of dynamo effect – the
so-called kinematic Ponomarenko dynamo [6, 8], with an eye
on how the terms in MHD equations, descending from the
chiral anomaly, change the effect. The Ponomarenko dynamo
does not necessarily represent the most experimentally real-
istic setup, but it does represent the simplest textbook model,

which contains the key qualitative features of a dynamo mech-
anism and is amenable to analytical analysis.

In order for a dynamo action to occur, the magnetic
Reynolds number must exceed a critical value Rc

m [46]. The
purpose of the calculation below is to obtain the dependence
of the critical Reynolds number, Rc

m, on the helicity term. For
simplicity, we neglect the time dependence of the chemical-
potential difference µL − µR on the times we consider.

We re-write Eq. (9) as

∂B
∂t

= ∇ × (u × B) +
c2

4πσ
∇2B + ξ∇ × B, (14)

where ξ = ge2(µL − µR)/(4π2~2σ). We consider a cylindri-
cal geometry of the sample with a flow field u = (0, rΩ, u0),
where Ω and u0 are constants, for r ≤ a, and u = 0 for r > a
[46]. Plugging the ansatz B(r, θ, z, t) = B(r)ei(nθ−kz)+γt into (9),
the components of the magnetic field B± = Br± iBθ satisfy the
equations

y2B′′± + yB′± =
[
q2y2 + (n ± 1)2

]
B±

−δ
[
nyB′∓ ∓ n(n ∓ 1)B∓ ± k2a2y2B± ∓ q2y2Br

]
(15)

for y = r/a ≤ 1 and

y2B′′± + yB′± =
[
s2y2 + (n ± 1)2

]
B± (16)

for y > 1, where B′± (B′′±) is the first (second) derivative with
respect to y; δ = 4πσξ/kc2, q2 = k2a2 + γτR + i(nΩ − ku0),
s2 = k2a2 + γτR, where τR = 4πσa2/c2 is the time scale of the
magnetic field diffusion.
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FIG. 2. (Colour online) The critical magnetic Reynold number Rc
m

of the n = 1 kinematic Ponomarenko dynamo as a function of the
helicity parameter δ = 4πσξ/kc2, with k being the wave-vector of
the dynamo instability. Rc

m ' 17.7 is the critical value for the dy-
namo in the absence of helicity. We note that a self-exciting dynamo
will always correspond to the chirality with a lower critical Reynolds
number. The chiral anomaly, thus, always aids the dynamo effect.

For each mode n, the magnetic field starts to grow exponen-
tially when Re(γ) > 0, which occurs if the magnetic Reynolds
number exceeds a critical value Rc

m. In the absence of helicity
(δ = 0), Eq. (14) reduces to the conventional dynamo equation
and the n = 0 mode is not excited for an arbitrary intensity of
the flow [46]. For non-zero helicity, we solved the inhomo-
geneous equations (15) and (16) with appropriate boundary



5

conditions imposed [41] to obtain the dispersion relation for
the dynamo mode. The obtained values of Rc

m for a dynamo
with n = 1 and a particular direction of wavevector k (the z
axis) are shown in Fig. 2. The n = 1 mode is the leading mode,
where the dynamo action commences first, and for which the
critical magnetic Reynold number is the smallest and poten-
tially within reach for actual Weyl systems. In the absence
of helicity (i.e., if δ = 0), it is known to be Rc

m ' 17.7 [46].
Interestingly enough, the helicity δ > 0 reduces the critical
value of the magnetic Reynold number for the n = 1 mode
and helps the dynamo action to occur for Rc

m < 17.7. Be-
cause dynamo flows with various directions of k may emerge
spontaneously in a turbulent liquid, the presence of helicity (a
consequence of the chiral anomaly) would generically aid the
dynamo bootstrap in any geometry of the flow.

In conclusion, this paper proposes hydrodynamic Weyl
semimetals as a host to electronic turbulence and/or dynamo
effect. We derived the Navier-Stokes equations (7) and equa-
tions of magnetohydrodynamics (9) and estimated two key
figures of merit – the hydrodynamic and magnetic Reynolds
numbers. Fig. 1 summarizes our findings and shows that both
turbulence and dynamo mechanism are in principle experi-
mentally achievable. However, many interesting questions
remain, such as experimental signatures of the turbulent elec-
tronic motion and the role of “new” terms in the Navier-Stokes
equations, descending from the quantum chiral anomaly. Fi-
nally, we mention that while three-dimensional Dirac mate-
rials are indeed interesting from the perspective of realizing
the dynamo bootstrap, a number of other electronic materials
may also serve as platforms to realize the effect. For exam-
ple, electronic metals near critical points (e.g., right above a
superconducting transition) represent a promising system to
look at in this context (both from the perspective of achieving
hydrodynamic flows and large Reynolds numbers) and could
pave the way to simulating in solid-state materials the effect of
magnetic field’s self-excitation – a remarkable phenomenon,
usually delegated to the fields of geophysics, astrophysics and
cosmology.
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