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Phonon modes in crystals can have angular momenta in general. It nevertheless cancels in equi-
librium when the time-reversal symmetry is preserved. In this paper we show that when a tem-
perature gradient is applied and heat current flows in the crystal, the phonon distribution becomes
off-equilibrium, and a finite angular momentum is generated by the heat current. This mechanism is
analogous to the Edelstein effect in electronic systems. This effect requires crystals with sufficiently
low crystallographic symmetries, such as polar or chiral crystal structures. Because of the positive
charges of the nuclei, this phonon angular momentum induces magnetization. In addition, when
the crystal can freely rotate, this generated phonon angular momentum is converted to a rigid-
body rotation of the crystal, due to the conservation of the total angular momentum. Furthermore,
in metallic crystals, the phonon angular momentum will be partially converted into spin angular
momentum of electrons.

PACS numbers: 63.20.-e, 81.05.Cy, 81.05.Ea, 85.75.-d

Conversions between the magnetization and the me-
chanical generation can be realized in various ways, such
as Einstein-de Haas effect [1] and Barnett effect [2]. In
the Einstein-de Haas effect, when the sample is magne-
tized by the external magnetic field, the sample rotates
due to the conservation of the angular momentum. On
the other hand, in the Barnett effect, a rotation of the
sample induces magnetization. The key mechanism of
these effects is the spin-rotation coupling, which relates
electronic spins with a mechanical rotation [3]. In addi-
tion, spin-rotation coupling also enables mechanical gen-
eration of spin current in various systems [4–6]. In these
effects, rotational motions of phonons in solids are impor-
tant, and in this context an phonon angular momentum
is formulated theoretically [7–9].

Here we focus on the phonon angular momentum intro-
duced in [7], which represents rotational motions of the
nuclei within each phonon mode. In crystals with time-
reversal symmetry, i.e. those without magnetic field or
magnetization, the phonon angular momentum of each
mode is an odd function of the wavevector k and the
total angular momentum vanishes in equilibrium due to
cancellation between phonons with the wavevector k and
those with −k. Meanwhile, one can expect that this can-
cellation goes away by driving the system off the equi-
librium, and nonzero phonon angular momentum is in-
duced. In this letter, to theoretically show this scenario,
we consider a crystal with a finite heat current, and show
a nonzero total phonon angular momentum in the crys-
tal due to its nonequilibrium phonon distribution. The
crystal symmetry should be sufficiently low to allow this
effect, and in particular the inversion symmetry should
be absent. We calculate the phonon angular momentum

generated by heat current for the wurtzite GaN as an
example of polar systems and the Te (tellurium) and Se
(selenium) as examples of chiral systems. For wurtzite
GaN, we calculate the phonon properties by using the
valence force field model and first-principle calculation,
and for Te and Se, we calculate the phonon properties by
using the first-principle calculation.
The phonon angular momentum [7] is a part of the

angular momentum of the microscopic local rotations of
the nuclei around their equilibrium positions. We begin
with the eigenmode equation for phonons D(k)ǫσ(k) =
ω2
σǫσ(k), where ǫσ(k) is a displacement polarization vec-

tor at the wave vector k with a mode index σ, and D
is the dynamical matrix. Here, we set the normalization
condition as ǫ†σ(k)ǫσ(k) = 1. In equilibrium, the phonon
angular momentum per unit volume [7] is expressed as

Jph
i =

1

V

∑

k,σ

lσ,i(k)

[

f0(ωσ(k)) +
1

2

]

, i = x, y, z(1)

lσ,i(k) = ~ǫ†σ(k)Miǫσ(k), (2)

where f0(ωσ(k)) = 1/(e~ωσ(k)/kBT
− 1) is the Bose dis-

tribution function, ωσ(k) is the eigenfrequency of each
mode, T is the temperature, and V denotes the sample
volume. The matrix Mi is the tensor product of the unit
matrix and the generator of SO(3) rotation for a unit
cell with N atoms given by (Mi)jk = IN×N ⊗ (−i)εijk
(i, j, k = x, y, z). lσ(k) in Eq. (2) is the phonon angular
momentum of a mode σ at phonon wave vector k, Be-
cause of the time-reversal symmetry of the system, it is
an odd function of k: lσ(k) = −lσ(−k), and their sum
vanishes in equilibrium.
On the other hand, when the temperature gradient

is nonzero, the phonon angular momentum becomes



2

nonzero. Within the Boltzmann transport theory, the
distribution function deviates from the Bose distribution
function f0 as

fσ,k = f0(ωσ(k))− τvσ,i(k)
∂f0
∂T

∂T

∂xi
, (3)

where vσ,i(k) = ∂ωσ(k)/∂ki is the group velocity of each
mode and xi is the ith component of the position. To
justify the use of the Boltzmann transport theory, we as-
sume here that the deviation of the system away from
equilibrium is small. In order to satisfy this condition,
we focus on the linear response regime where the heat
current is infinitesimally small. We also assume that
the system relaxes towards the local thermal equilib-
rium quickly via nonlinear phonon-phonon interactions.
As shown in Eq. (3), the effect of nonlinear phonon-
phonon interactions is represented by the phonon relax-
ation time τ based on the constant relaxation time ap-
proximation. The dependence of τ on the mode index
σ and the wavevector k does not alter our main conclu-
sion and the constant relaxation time approximation is
enough for a rough estimation. By substituting Eq. (3)
into Eq. (1), the total phonon angular momentum per
unit volume becomes

Jph
i = −

τ

V

∑

k,σ

lσ,ivσ,j
∂f0(ωσ(k))

∂T

∂T

∂xj
≡ αij

∂T

∂xj
(4)

where αij denotes a response tensor. The generated
phonon angular momentum is proportional to the tem-
perature gradient. This effect is caused by nonequilib-
rium phonon distribution, leading to an unbalance of
phonon angular momentum, and therefore it is analogous
to the Edelstein effect [10–16] in electronic systems.
In order to realize a nonzero response tensor αij , the

crystal symmetry should be sufficiently low. Necessary
conditions for the crystallographic symmetry are shown
in the Supplementary Material [17]. It is instructive to
decompose the response tensor into symmetric and an-
tisymmetric parts. The antisymmetric part of αij is es-
sentially a polar vector αk ≡ ǫijkαij and therefore it sur-
vives only for polar crystals, such as ferroelectrics and
polar metals. In this case, when we set the z axis to be
along the polarization or the polar axis, αxy = −αyx are
the only nonzero elements of this tensor. Thus in any po-
lar crystals, the temperature gradient and the generated
angular momentum are perpendicular to each other, and
they are both perpendicular to the polarization vector.
On the other hand, the symmetric part of αij changes
sign under inversion, and remains typically in chiral sys-
tems such as tellurium. In systems with very low sym-
metry, both the antisymmetric and the symmetric parts
become nonzero.
As an example of polar systems, we discuss the

wurtzite structure (space group: P63mc). The wurtzite
structure has four atoms in the unit cell, as shown in

Fig. 1(a) for GaN. When we take the polar axis to be
along the z axis, the nonzero elements of the response
tensor αij are αxy = −αyx from symmetry analysis,
as shown in Fig. 1(e). We first estimate the generated
phonon angular momentum by heat current both by the
valence force field model of Keating [26] and by first-
principle calculations. We describe the detalils of our
first-principle calculation in the Supplementary Mate-
rial [17]. The lattice structure and corresponding Bril-
louin zone are shown in Figs. 1(a) and (b). The details
of valence force field model is summarized in the Supple-
mentary Material [17]. The result of phonon dispersion
for wurtzite GaN by the valence force field model cal-
culation is Fig. 1(c). Despite its simplicity, this model
well describes the nature of phonon and phonon angular
momentum can be evaluated (see Supplementary Ma-
terial [17]). The band structure obtained by the first-
principle calculation (Figs. 1(d)) shows good agreement
with previous works [27–29]. Overall features of the band
structure are similar to those obtained by the valence
force field model except for the splitting of the longitudi-
nal and transverse optical bands at the long wavelength
limit. Examples of distributions of phonon angular mo-
mentum lσ(k) are in Figs. 1(f) and (h), showing simi-
larity with spin structure in Rashba systems. We show
the trajectories of atoms in the sixth and eleventh lowest
modes in Figs. 1(g) and (i), respectively. By comparing
Figs. 1(g) and (i), the oscillation of nitrogen atoms in
the eleventh modes is much larger than that of the gal-
lium atoms, while the oscillation of gallium atoms in the
sixth mode is larger. The response tensor is estimated as
αxy ∼ −10−7

× [τ/(1s)] Jsm−2K−1 at T = 300 K.

As other examples, we consider Te (tellurium) and Se
(selenium) [30]. Te and Se have a helical crystal struc-
ture, as shown in Fig. 2(a). The helical chains having
three atoms in a unit cell form a triangular lattice. The
space group is P3121 or P3221 (D4

3 or D6
3) correspond-

ing to the right-handed or left-handed screw symmetry.
They are semiconductors at ambient pressure. Numer-
ical results of the phonon dispersions of Te and Se by
first-principle calculation are shown in Figs. 2(b) and
(c), respectively. The distributions of phonon angular
momentum lσ(k) on the two planes in the Brillouin zone
(Fig. 2(d)) are shown in Figs. 2(e), (f) for the fourth
lowest band. Because of the threefold screw symmetry
around the z axis, the angular momentum on the kz axis
is along the z axis. Fig. 2(g) represents the trajecto-
ries of the three atoms in the unit cell for the fourth
mode. Here, because of the threefold screw symmetry
at the k point considered, the trajectories are related
with each other by threefold rotation around the z axis,
and the angular momentum is along the z axis by sym-
metry. The overall feature are similar between Se and
Te, as shown in the Supplementary Material [17]. In
Te and Se, from symmetry argument, the response ten-
sor has nonzero elements αxx = αyy and αzz , whose
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FIG. 1. (color online) Crystal structure of GaN, and phonon angular momentum of GaN. (a) Crystal structure of wurtzite GaN.
The red line shows the unit cell. (b) First Brillouin zone of GaN. (c) Numerical results of phonon dispersion of wurtzite GaN
using the valence force field model. (d) Numerical results of phonon dispersion of wurtzite GaN by first-principle calculation.
(e) Schematic illustration of the relation between temperature gradient and the phonon angular momentum. (f) Distribution
of the phonon angular momentum lσ(k) of the sixth lowest band on the plane kz = 0. (g) Trajectories of the four atoms in
the unit cell for the phonon of the sixth band at ka

2π
= (0, 0.3849, 0), which is indicated as a black dot in (f). (h) Distribution

of the phonon angular momentum lσ(k) of the eleventh lowest band on the plane kz = 0. (i) Trajectories of the four atoms in
the unit cell for the phonon of the eleventh band at ka

2π
= (0, 0.3849, 0), which is indicated as a black dot in (h). (g) and (i)

represent the normalized polarization vector εσ(k) with ε†ε = 1, and their axes (x, y, z) are shown in a dimensionless unit.

symmetry is identical with the electronic Edelstein ef-
fect in tellurium [16]. The response tensor for Te is
estimated as αzz ∼ −10−7

× [τ‖/(1s)] Jsm−2K−1 and
αxx ∼ 10−7

× [τ⊥/(1s)] Jsm
−2K−1, and that for Se is

estimated as αzz ∼ −10−6
× [τ‖/(1s)] Jsm−2K−1 and

αxx ∼ −10−7
× [τ⊥/(1s)] Jsm

−2K−1.

Next we propose experiments to measure the phonon
angular momentum generated by the heat current. The
phonon angular momentum is a microscopic local rota-
tion, and it cannot be measured directly. To measure
this, we consider a phonon version of the Einstein-de
Haas effect. Suppose the crystal can rotate freely. By
conservation of angular momentum, when a heat current
generates a phonon angular momentum Jph, a rigid-body
rotation of the crystal also acquires an angular momen-
tum which compensates the phonon angular momentum,
J rigid−body = −Jph. This conservation holds when we
take an average over a long period much longer than a
typical time scale of the phonon motions, as discussed
in detail in Supplemental Material. For example, in po-
lar crystals, when the heat current flows along the y-
direction, the phonon angular momentum along the x-
direction is generated, and it is converted to a rigid-body
rotation, as shown in Fig. 3(a). Similarly, in tellurium, it
is schematically shown in Fig. 3(b), and the rotation di-
rection will be opposite for right-handed and left-handed
crystals. Next, we estimate the angular velocity ω of the
rigid-body rotation in GaN as an example. We set the
sample size to be L × L × L and the phonon relaxation
time to be τ ∼ 10 ps [29]. The temperature difference

over the sample size L is denoted by ∆T . The angular
momentum of the rigid-body rotation is represented as
J rigid-bodyL3 = Iω, where I = ML2/6 is the inertial mo-
ment of the sample with the total mass M . We estimate
the angular velocity of the rigid-body rotation as

ω = −Jph
x L3/I ∼

∆T/(1K)

(L/(1m))3
× 10−21 s−1. (5)

Then, by setting the temperature difference to be ∆T =
10 K, an angular velocity of the rigid-body rotation ω is
estimated as 10−8 s−1 when L = 100 µm and 10−2 s−1

when L = 1 µm. They are sufficiently large for experi-
mental measurement. The estimations for Te and Se are
shown in the Supplementary Material [17].
Because this phonon angular momentum means rota-

tional motions of the nuclei having positive charges, it
induces magnetization in itself. This can be estimated
using a Born effective charge. The magnetic moment m
is related with the angular momentum j by m = γj with
the gyromagnetic ratio γ. In the case of wurtzite GaN,
the Born effective charge tensor eZ∗

αβ is eZ∗
xx = eZ∗

yy =
2.58e, eZ∗

zz = 2.71e from our ab-initio calculation. The
gyromagnetic ratio tensors of the Ga and N atoms are
given by γGa

αβ = geZ∗
αβ/2mGa and γN

αβ = −geZ∗
αβ/2mN

with g-factor of GaN g‖ = 1.951, g⊥ = 1.9483 [31], where
mGa and mN are the mass of the Ga atom and that of
the N atom, respectively. We estimate the order of mag-
nitude of the magnetization as

Mx ∼ −
∆T/(1K)

L/(1m)
× 10−11 Am−1. (6)
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FIG. 2. (color online) Phonon angular momentum of Te and Se in the first-principle calculation. (a) Crystal structure of Te.
(b) Phonon dispersion of Te. (c) Phonon dispersion of Se. (d) First Brillouin zone of Te. (e), (f) Distribution of the phonon
angular momentum lσ(k) of the fourth lowest band. (e) and (f) show the results on the plane kza

2π
= 0.2927 and on the plane
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, respectively. These planes correspond to the two cross sections in (d). (g) Trajectories of the four atoms in the unit

cell for the phonon of the fourth lowest band at ka
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= ( 1

3
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3
, 0.2927), which is indicated as the black dots in (d), (e), and (f).

(g) represents the normalized polarization vector εσ(k) with ε†ε = 1, and its axis (x, y, z) is shown in a dimensionless unit.
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FIG. 3. (color online) Schematic diagram of the generated
rigid-body rotation due to the heat current. (a) and (b) shows
two typical cases: (a) for a polar crystal such as wurtzite GaN
and (b) for a chiral crystal such as Te and Se.

Therefore the magnetization Mx of GaN induced by
temperature gradient is estimated as 10−6 Am−1 when
L = 100 µm, ∆T = 10 K and 10−4 Am−1 when
L = 1 µm, ∆T = 10 K. Although the order of mag-
nitude of this magnetization is very small, it is expected
to be observable experimentally.
In summary, we have theoretically predicted and es-

timated the phonon angular momentum generated by
the heat current for wurtzite GaN, Te, and Se. This
mechanism is analogous to the Edelstein effect in elec-
tronic systems. We proposed experiments to measure the
phonon angular momentum generated by the heat cur-
rent. When the crystals can rotate freely, the phonon an-
gular momentum generated by heat current is converted
to a rigid-body rotation of the crystals due to the conser-

vation of angular momentum. This rigid-body rotation
is sufficiently large for experimental measurement when
the size of sample is micro order. On the other hands,
because of the nuclei having positive charge, the phonon
angular momentum generated by heat current induces
magnetization. Moreover, in metals, the phonon angular
momentum will be partially converted to electronic spin
angular momentum via the spin-rotation coupling, which
is similar to the spin-current generation proposed for the
surface acoustic waves in solids [5], and for the twiston
modes in carbon nanotubes [6]. These experimental pro-
posals are expected to unveil properties of the phonon
angular momentum.
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