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Resonant exchange is a general process playing a key role in many-body dynamics and transport phenomena,
such as spin, charge, or excitation diffusion. The underlying process is described by the resonant exchange cross
section. We show that the s-wave scattering, generally thought to contribute mainly in the ultracold (or Wigner)
regime, dictates the overall cross section over a broad range of energies. We derive an analytical expression
and explain its applicability high above the Wigner regime. In particular, we demonstrate its relationship to
the classical capture (Langevin) cross section, and apply it to three very different resonant processes; namely,
resonant charge transfer, spin-flip, and excitation exchange. This expression explains large variations for different
isotopes that cannot otherwise be accounted for by the small change in mass. The s-wave signature also allows to
gain information about the Wigner regime from data obtained at much higher temperatures, which is especially
advantageous for systems where the ultracold regime is not reachable.

The quantal regime, in which the quantum nature of phe-
nomena plays a pivotal role, is at the forefront of research in
many areas of Physics. This is particularly well illustrated by
various achievements at ultracold temperatures, which range
from the control of few body interactions, e.g., using tun-
able Feshbach resonances [1, 2] to explore degenerate quan-
tum gases [3, 4] or exotic three-body Efimov states [5, 6], to
control of internal and motional states to explore many-body
dynamics [7], including studies of new phases or quantum
simulations [8, 9]. In recent years, rapid progress has been
made to extend the types of systems investigated from atomic
to molecular [10–13] and ionic species [14, 15]. However,
for many of them, e.g., atom-ion hybrid systems [16–24], the
quantum regime dominated by s-wave scattering is still outside
the reach of today’s experimental techniques.

In many ultracold studies, resonant exchange plays a cen-
tral role, e.g., in Rydberg samples [25] where excitation ex-
change is involved in Föster resonances [25, 26] or quantum
random walk [27]. Other examples relate to spin-exchange,
e.g., between ultracold atoms and molecules [28–31] or in
two-orbital interactions with SU(N)-symmetry [32]. Recently,
atom-exchange reactions between NaK Feshbach molecules
and K atoms were investigated as an effective spin-exchange
interaction [33]. Resonant exchange between two asymptoti-
cally degenerate states can be understood as the interference of
two interaction paths, and has been studied in the scattering of
neutral atoms, e.g., spin-flip in alkali atom collisions [34, 35]
with singlet and triplet potential curves, as well as in S-P ex-
citation exchange for identical atoms [36], and charge transfer
between an ion and its neutral parent atom [37, 38]. Recent
experimentswith atom-ion systems have observed spin-flip dy-
namics above the Wigner regime in Yb++87Rb [20], Yb++6Li
[39], and 88Sr++Rb [40, 41]. For such systems, reaching the
Wigner regime is difficult, and probing s-wave scattering at
higher temperatures will provide essential information. In
cases involving quasi-resonant scattering, e.g., in isotope ex-
change, the resonant approximation adequately describes the
system if the scattering energy is higher than the energy split-
ting between the asymptotic states [42, 43].

In this Letter, we study the resonant exchange process

Xα + Xα′ −→ Xα′ + Xα, (1)

where α and α′ denote internal states, such as charges 0 and
+1 in charge transfer X + X+ → X+ + X , or electronic states
S and P in excitation exchange X(S) + X(P) → X(P) + X(S).
The corresponding cross section reads [14, 37, 44]

σexc(E) =
π

k2

∞∑̀
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where k =
√

2µE/~2, with reduced mass µ and collision en-
ergy E . Here, ηa/b

`
is the `th partial wave scattering phase

shift along the potential Va/b corresponding to the asymptoti-
cally degenerate channels a/b (e.g., singlet/triplet states). We
consider inverse power-law tails V ∼ −Cn/rn with n > 2.
For energies high above the Wigner regime, many partial

waves contribute; we thus regard ` as a continuous variable
and use a semi-classical expression based on the Wentzel-
Kramers-Brillouin (WKB) approximation [44, 45]
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where r i0(`) is the classical turning point. Defining Fi,`(r) ≡(
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Although ` can be large, we assume that the centrifugal term
(` + 1

2 )
2/r2 is small enough that the wave function still probes

the inner region, i.e., ` < L with L defined by ~2(L+ 1
2 )

2/r2
top ≡

2µ[E−V(rtop)]. As shown in Fig. 1, when the top of centrifugal
barrier located at rtop is below E , r i0(`) is deep inside the
short range region, moving suddenly to rtop at L and to the
outer region for ` > L. The centrifugal barrier appears at
values of r where the potential is given by its asymptotic form
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FIG. 1. Typical Va/b (black/red) and turning points ra/b0 (r ≤ R is
shaded). Right panel: Va = Vb = −

Cn
rn for r > R leading to identical

centrifugal barriers. For ` = L, the barrier reaches the scattering
energy E = 10−6 a.u. (∼ 300 mK); as ` grows, the turning points
move "suddenly" from the short-range shaded region (L − 1) to the
top (L) and outer side of the barrier (L + 1). Here a/b stands for the
singlet/triplet state of Rb2 with L ≈ 22.4.

V(r) ' −Cn/rn, allowing to split Ai(`) into two regions, below
and above R, with R < rtop,
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We are interested in ∆η` ≡ ηa` − η
b
`
in Eq. (2) and noting that

A∞a (`, R) = A∞
b
(`, R), we use Eq. (4) to obtain

∂∆η`
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2 )[Aa(`, R) − Ab(`, R)] ≡ −(` + 1
2 )∆A(`). (6)

At short range (r ≤ R), ~2(` + 1
2 )

2/r2 � 2µ[E − V(r)],
and we can expand Fi,` ≈ Fi,`=0 + O(`

2), so that to leading
order, Ai(`, R) ≈

∫ R

r i0 (`)
dr
r2 Fi,`=0(r). We can then neglect the

`-dependence of r0(`) (see Fig. 1) and take its s-wave value
r0(`) ≡ r0, so that ∆A(`) ≈ ∆A0 is then `-independent, and
Eq. (6) becomes ∂

(
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)
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b
0 ) − `(` + 1)∆A0. Using the

Levinson theorem [44, 45] to write ηa/b0 = Na/bπ + δ
a/b
0 ,

where δa/b0 is the s-wave phase shift modulo π and Na/b is the
number of bound states supported by Va/b , we finally have

∆η` ≈ π∆N + ∆δ0 − `(` + 1)∆A0, (7)

where ∆N = Na − Nb , ∆δ0 = δ
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The inner turning point r i0 depends slightly on the scattering
energy E , and typically, ∆A0 varies little with E , and is of the
order 0.01–0.001 for the physical systems considered in this
Letter, with ∆A0 smaller for heavier systems due the 2µ factor.
Returning to the cross section, we approximate the sum in

Eq. (2) with an integral, σexc ≈
π
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∫ ∞
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`
),

TABLE I. Langevin cross section σL for various n.

n 3 4 6

σL 3π
(

C3
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2π
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)1/2 3π
2

(
2C6
E

)1/3

and write using Eq. (7)
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The upper limit is set to L since the phase shift difference
is negligible for ` ≥ L as discussed above [37]. Defin-
ing x ≡ ∆δ0 −

1
2`(` + 1)∆A0, our integral simply becomes
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With L(L + 1)∆A0 small, we find sin[2∆δ0 − L(L + 1)∆A0] ≈
sin(2∆δ0) − L(L + 1)∆A0 cos(2∆δ0) and with L(L + 1) ≈ L2,
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π

k2
1
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2
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≈
π

k2 L2 sin2
∆δ0(E), (11)

which is related to the Langevin cross section σL , defined by
the maximum impact parameter bmax still allowing colliding
partners to reach the short-range region where the exchange
process occurs with unit probability [14, 37, 44]. With b ≡
(`+ 1

2 )/k, bmax is obtained for ` = L, as the centrifugal barrier
prevents access into short-range for ` > L (see Fig. 1). Thus,

σL(E) = πb2
max '

π

k2 L2, (12)

where L + 1
2 ≈ L and L(E) is obtained from E = V(rtop). The

top of the barrier for V(r) ∼ −Cn/rn asymptotic potentials is
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(
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, which yields
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1
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Again, with L(L + 1) ≈ L2, Eq. (12) reads

σL(E) = π
( n

n − 2

) n−2
n
(nCn)

2
n (2E)−

2
n . (14)

Expressions for common power-laws are listed in Table I, with
n = 3 appearing in dipole allowed excitation exchange, n = 4
in polarization potentials between atoms and ions, and n = 6
in van der Waals interactions between ground state atoms.
Combining Eqs. (12) and (11) yields σexc = σL sin2(∆δ0),

which lacks the ` = 0 contribution dominating the Wigner
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FIG. 2. Resonant charge transfer σexc (right axis: cm2) for various
isotopes of Yb+Yb+ vs. scattering energy E (top axis: kelvin). Nu-
merical results (black line) are compared to the standard σL (blue
dot-dashed line), to Eq. (15) (magenta line), and its components; the
s-wave contribution π

k2 sin2 ∆δ0 (black dashed line) and σL sin2 ∆δ0
(solid blue line). Isotopes 168 (a), 174 (e), and 176 (f) show signifi-
cant suppression when compared to σL , while 170 (b), 172 (c), and
173 (d), σexc ≈

1
2σL over a wide range of energies.

regime (E → 0). Thus, we add the missing s-wave term and
obtain the final result:

σexc(E) =
[ π

k2 + σL(E)
]

sin2
∆δ0(E). (15)

This equation explicitly shows how s-wave scattering mod-
ulates the Langevin cross section, leading to a signature of
the s-wave regime at higher temperatures. It arises from the
“phase-locking” of ∆η` due to cancellation of the long-range
contribution to phase shifts and their insensitivity to ` at short-
range. This led to Eq. (6) and its link to ∆δ0 in Eq. (7) using
WKB. The applicability of Eq. (15) depends on the details of
the potentials and validity of the approximations used. If one
potential has `-sensitive turning points, e.g., forV(r) repulsive
or attractive but extremely shallow, phase-locking cannot oc-
cur for high `. The same is true if the long-range cancellation
in ∆η` is not adequate, e.g., if the centrifugal barriers for Va/b

are different. In cases where Va/b are very different at short
range, ∆A0 might be such that L(L + 1)∆A0 is significant, re-
quiring Eq. (10) instead of (11) to be used. Our Eq. (15) also
relies on evaluating Ai(`) via Eq. (5); if rtop . R, the expansion
for Ai(R, `) will require higher powers of (` + 1

2 ). Similarly,
at high E , even if R < rtop, (` + 1

2 )
2/r2 is significant enough

to bring additional ` dependence of ∆A and modify Eq. (15).
The insensitivity of η` has been noted in other work, e.g., using
multichannel quantum-defect theory (MQDT) to express the
scattering K-matrix in terms of few parameters [46–49], while
the WKB approximation was shown to be useful in related
studies [49, 50]. We note that phase-locking based on WKB
was invoked in a study of low spin-flip rate in [41].

To illustrate the effect of the s-wave regime at higher en-
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FIG. 3. Same as Fig. 2 for spin-flip in Na+ACa+, with A = 40 (a), 42
(b), 43 (c), and 44 (d). Significant suppression occurs in (b), while
σexc is close to σL for the other isotopes. Here, C4 = 81.35 a.u.

ergies, we first consider resonant charge transfer between Yb
and Yb+ for various isotopes in Fig. 2; as reported in [51],
σexc exhibits a modified Langevin regime strongly affected by
the Wigner regime, despite the contribution of many partial
waves. Figure 2 compares Eq. (15) to the full numerical results
computed using the approach described in [51], with poten-
tialsVg/u corresponding to the 2Σ+

g/u
states of Yb+2 behaving as

−C4/r4 at large separation, with C4 = 72.5 a.u. The Langevin
cross section σL is also shown to emphasize the effect of the
s-wave phase shifts. For some isotopes, like 170, 172, and 173
shown in panels (b), (c) and (d), σexc is roughly 1

2σL , which
is expected as 〈sin2 ∆δ0〉 =

1
2 on average if ∆δ0 has a random

value. However, in other cases, like isotopes 168, 174, or
176 in (a), (e) and (f) respectively, the signature of the s-wave
regime is noticeable, with a reduction of two orders of magni-
tude for (a) and (e), and one for (f). Equation (15) provides the
explanation for this unexpected correlation; if the s-wave phase
shifts are (accidentally) nearly equal, the phase-locking result
of Eq. (7) guarantees the smallness of ∆η` for a wide range of
partial waves, yielding a diminished cross section. When the
s-wave suppression of σexc is significant, as in Figs. 2 (a) and
(e), the underlying shape resonances become more apparent
as the background cross section diminishes. Naturally, these
resonances are absent from our WBK treatment in Eq. (15),
which reproduces the general trend of the numerical results
over a large range of E . According to Eq. (13), L2 < 1 for
E . 10−13 a.u. for this system, at which point the ` = 0 contri-
bution (negligible at higher E) satisfying the Wigner regime
kicks in. The ab initio potentials Vg/u are not accurate enough
to predict the s-wave results; however, measurements of the
variation of σexc with isotope at higher energies would pro-
vide information to better determine the potentials in a fashion
similar to Feshbach resonances used to adjust the potentials
between ground state atoms [1, 2].
Atom-ion scattering can also lead to a resonant spin-flip

process, such as in Na+Ca+ [52, 53] interacting via a singlet
(S) A1Σ+ or a triplet (T) a3Σ+ state described by the potentials
VS/T and phase shift δS/T

`
; σexc was found to be roughly 3

4σL

in [52]. Recent experiments on Yb++87Rb [20], Yb++6Li
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[39], and 88Sr++Rb [40, 41] have explored spin-flip dynamics.
In Fig. 3 we investigate the effect of the s-wave scattering
on the spin-flip in Ca++Na, using VS/T described in [52, 54]
(behaving as C4/r4 at large r) for four isotopes of Ca, namely
40, 42, 43, and 44. Again, Eq. (15) agrees with the numerical
cross sections over a wide range of energy. Figure 3 shows
a variety of behavior; in (a) and (d), σexc ≈ σL at higher
energies, corresponding to ∆δ0 = δS0 − δ

T
0 ≈ π/2, while (c)

depicts a small suppression by a factor of about 2
3 . The case

of 40Ca leads to a substantial reduction of about 1
200 , again

revealing the underlying shape resonances.
Spin-flip collisions have also been studied between neutral

atoms, especially alkali atoms like Li [34] or Na [35], which
interact along a singlet (S) X1Σ+g and a triplet (T) a3Σ+u states
behaving asymptotically as −C6/r6. We consider 87Rb as the
corresponding scattering lengths are nearly equal. Using VS/T

described in [55], we computed σexc for pure 87Rb, 85Rb, and
their mixture. The results are shown in Fig. 4; σexc for the mix-
ture in (a) follows roughly σL away from ultracold tempera-
tures. As expected, for 87Rb in (b) with both singlet and triplet
scattering lengths almost equal (aS ≈ aT ≈ 100 a.u.), the
s-wave suppression is drastic, with shape resonances emerg-
ing from the suppressed background. Although not perfect,
Eq. (15) tracks the overall reduction of a factor of 104 in σexc.
Much more surprising is the result for 85Rb (c) with very dif-
ferent scattering lengths (aS ≈ 2500 a.u. and aT ≈ −390 a.u.),
where one could have expected σexc to follow σL . The s-wave
phase shifts in Fig. 4(d) explain the result. The large aS/T im-
ply rapid changes of δS/T0 with E (or k) in the Wigner regime.
As k grows, tan δi0 ≈ 2aik/(aireff

i k2 − 2) [45] reaches 2/kreff
i

if ai is large, and with effective ranges reff
i basically the same

for 85Rb and 87Rb, the large initial ∆δ0 quickly evolves into a
value comparable to that of 87Rb.

We consider a final case with r−3 long-range potentials.
Many examples occur in nature, such as excitation exchange
[36] in metastable helium He(11S)+He∗(23P) [56, 57], or in
the scattering of metastable atoms, like H(2s)+H(2s) [58, 59].
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FIG. 5. Same as Fig. 2 for excitation exchange in 133Cs++133Cs(6p)
(a), and for a fictitious mass of 132.75 u (b).

Here, we examine Cs++Cs∗(6p) which can lead to the ex-
change of the 6p excitation onto Cs+. Four states are involved
if we neglect spin-orbit coupling, two Σ+

g/u
and twoΠg/u , each

correlated to the Cs+2 (6p) asymptote, and described by poten-
tials VΣ

g/u
and VΠ

g/u
and phase shifts δg/u

Σ,`
and δg/u

Π,`
. Defining

∆δΣ` ≡ δ
g
Σ,`
− δu
Σ,`

and ∆δΠ` ≡ δ
g
Π,`
− δu
Π,`

, we have [36, 44]

σexc =
π

3k2

∞∑̀
=0
(2` + 1)

[
sin2
∆δΣ` + 2 sin2

∆δΠ`
]
. (16)

Since the Σ and Π curves have different C3 values, L for both
sets is different. Using our approximations, σexc becomes

σexc=
1
3

[ π
k2 +σ

Σ
L

]
sin2
∆δΣ0 +

2
3

[ π
k2 +σ

Π
L

]
sin2
∆δΠ0 , (17)

where σΣ(Π)L is obtained with the appropriate value of C3. The
results shown in Fig. 5 were obtained with the curves from
Jraij et al. [60]. The Π curves are repulsive at large separation
behaving as +CΠ3 /r

3 (CΠ3 = 13.95 a.u.) with δg
Π,`
≈ δu
Π,`

for
all `, their cancellation leading to a negligible Π contribution.
The two Σ curves are attractive, and were matched at large
separation to −C4/r4 − C3/r3 with C4 = 1082 a.u., and CΣ3 =
27.9 a.u. For 133Cs, we find σexc ≈

1
2σL , while rescaling it

mass to mCs = 132.75 u to simulate a different isotope, σexc is
reduced by 1

20 , again exposing resonances as in other cases.
In conclusion, we derived a simple expression for reso-

nant scattering processes that relates the cross section to the
Langevin cross section and the s-wave regime. We applied it to
various resonant processes like charge transfer, spin-flip, and
excitation exchange, and for different interaction tails behav-
ing as r−n covering the most common powers. The expression
points to the signature of the s-wave regime at higher tem-
peratures, and how the ∆δ0 “phase-locking" modulates σexc.
The results presented here also provide a diagnostic tool par-
ticularly relevant to system for which ultracold temperatures
are not easily achievable, such as atom-ion hybrid systems for
which the nK regime remains a challenge. In fact, by mea-
suring the cross section or rate for a resonant process, e.g.,
charge transfer or spin-flip, at higher temperatures more easily
accessible, one can gain information about the s-wave regime.
If a sizable suppression is observed as compared to σL , this
implies that the s-wave phase shifts are close to each other.
In addition, the suppression helps revealing shape resonances
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otherwise submerged which can also help determining the po-
tential curves more accurately. Finally, the expression should
be applicable to quasi-resonant processes [44], like charge
transfer with mixed isotopes [42, 43], or in reactions involving
different hyperfine asymptotes [33] or isotope substitutions
[61, 62], as long as the scattering energy is larger than the
energy gap between the asymptotes of the relevant potentials.
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