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We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide
range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a
first principles approach for strongly coupled systems. Specifically, we show results for the density
equation of state, the magnetization, and the magnetic susceptibility. At zero polarization, our
results agree well with state-of-the art results for the density equation of state and with experimental
data. At finite polarization and low fugacity, our results are in excellent agreement with the third-
order virial expansion. In the fully quantum mechanical regime close to the balanced limit, the
critical temperature for superfluidity appears to depend only weakly on the spin polarization.

Introduction – Without a doubt, one of the most in-
tensely studied systems in recent years, at the interface of
atomic, nuclear, and high-energy physics, is that of two-
component fermions in the scale-invariant limit of infinite
s-wave scattering length and effectively zero interaction
range: the unitary Fermi gas (UFG) [1–4]. This system
is now routinely realized to an excellent approximation
with ultracold alkali atoms in several laboratories around
the world (see Refs. [5–9] for reviews of theory and exper-
iment) and simultaneously (though only approximately)
in dilute neutron matter in neutron star crusts [10–12].
Because of the lack of scales characterizing the inter-
action between the fermions, all physical quantities at
unitarity are fully determined by universal numbers in
units of the fermion density [13] being the only scale of
the system. This property renders the system relevant
for such disparate energy scales as those of atomic and
astro-physics, and has moreover been shown to reflect a
nonrelativistic type of conformal invariance [14–17].

A peculiarity of the UFG is that it lies in the middle of
the crossover between Bardeen-Cooper-Schrieffer (BCS)
superfluidity and Bose-Einstein condensation (BEC),
where the appearance of pseudo-gap phenomena and pre-
formed Cooper pairs at high temperature appears possi-
ble [18–22]. This suggests intriguing connections to high-
Tc superconductors. Due to such relevance of the UFG
for various fields, the past two decades have seen un-
counted studies exploring the properties of this crossover
in the unpolarized limit both theoretically and experi-
mentally [4]. Finite spin polarizations are even more chal-
lenging to tackle (see e.g. [23–27] for reviews, and [28–42]
for experimental work) and therefore this case leaves us
with many puzzles. At low temperatures, when the sys-
tem is superfluid, a large enough polarization will destroy
superfluidity [43, 44]. Precisely how that happens, and
what other exotic superfluid phases may be traversed in
the process, has remained a controversial topic not only
for atomic superfluids but also for their quantum chro-
modynamics (QCD) counterparts, namely color super-

conductors [23]. Part of the challenge in answering such
questions is that the UFG (not unlike QCD and many
other systems) is a strongly correlated many-body sys-
tem lacking a small parameter and therefore can only be
tackled with nonperturbative methods. However, non-
perturbative (semi-)analytic studies of such systems rely
on some ansatz and conventional Monte Carlo (MC) cal-
culations are unavailable at finite polarization due the
infamous sign problem.

In this work, we explore the spin polarized UFG at
finite temperature, providing some of the essential mea-
surable properties that characterize its universal thermo-
dynamics, namely the density and magnetic equation of
state (EOS). From those, differentiation yields static re-
sponse functions such as the compressibility and mag-
netic susceptibility, while integration yields the pressure.
To determine those EOSs, we implement a complex ver-
sion of stochastic quantization known as the complex
Langevin (CL) method [45], which we have developed and
tested for spin- and mass-imbalanced one-dimensional
nonrelativistic systems [46], including successful compar-
isons with exact answers in the ground state [47] and at
finite temperature [48]. In the present work, we further
validate our approach by comparing our results with the
virial expansion and state-of-the-art MC calculations at
zero polarization, eventually obtaining ab initio predic-
tions for thermodynamic quantities of the UFG over wide
temperature and polarization ranges.
Hamiltonian and method – Fermions in the unitary

limit are governed by a Hamiltonian with a nonrelativis-
tic dispersion relation and a zero-range interaction:

Ĥ=

∫
d3x ψ̂†s(x)

(
−~2∇2

2m

)
ψ̂s(x)−g

∫
d3x n̂↑(x)n̂↓(x) ,

where ψ̂†s, ψ̂s are the fermion creation/annihilation oper-
ators for spin projection s =↑, ↓ (summed over in the
kinetic term), and the corresponding coordinate-space
densities are n̂s(x) = ψ̂†s(x)ψ̂s(x). Although we have
written ~ and the fermion mass m explicitly, we take
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~ = kB = m = 1 from this point on. The grand-canonical
partition function then reads

Z = Tr exp
[
−β(Ĥ − µ↑N̂↑ − µ↓N̂↓)

]
, (1)

where µs is the chemical potential for spin s =↑, ↓ par-
ticles, N̂s is the corresponding particle number operator,
and β−1 = T is the temperature. To tackle the strongly
coupled many-body problem described by Z, we put the
system on a spacetime lattice (via a Suzuki-Trotter fac-
torization) and introduce a path integral representation
of the interaction by way of an auxiliary-field Hubbard-
Stratonovich (HS) transformation. As those steps are
rather standard (see e.g. [49]), we only state the result:

Z =

∫
Dσe−S[σ] , (2)

where S[σ] = − ln det(M↑[σ]M↓[σ]) is the action for the
(real-valued) HS field σ and contains all the input pa-
rameters mentioned above. The details of the shape of
the real-valued Fermi matrix Ms[σ] can be found for in-
stance in Ref. [49]. It is important to note here, however,
that M↑[σ] includes µ↑ and not µ↓, and viceversa for
M↓[σ]; i.e., we use an HS transformation that decouples
the interaction in the density channel. As a result, in the
unpolarized limit µ↑ = µ↓, the fermion determinant is
positive and the action is real, such that e−S[σ] ≥ 0 can
be used as a probability measure in a Metropolis-based
MC calculation, i.e. there is no sign problem in that case.
On the other hand, for the polarized case µ↑ 6= µ↓, such
that M↑[σ] 6= M↓[σ], and therefore S can be complex,
which hinders the use of probabilistic MC approaches.

The aforementioned sign problem is well known and
pervades MC approaches across all of physics [50], in-
cluding high-Tc superconductors (due to strong repulsive
interaction away from half filling) [51], nuclear struc-
ture (strong repulsive core, finite spin-isospin polariza-
tion) [52, 53], and QCD (at finite quark density) [54–57],
to name a few. Recently, some progress has been made
in understanding the sign problem as well as in its treat-
ment with complex-plane methods such as the CL ap-
proach [45] and Lefschetz thimbles [58–62]. In essence,
the CL algorithm implements an extension of conven-
tional, Langevin-based stochastic quantization [63–65] to
the case of complex-valued actions. As the Langevin
equation uses S to evolve σ in its configuration space, a
complex S naturally requires complexifying the HS field
σ. Further details on the algorithm and our implemen-
tation can be found in Refs. [46, 48, 66–68]. Thus far,
we have successfully applied such an approach to nonrel-
ativistic fermions in 1D in a variety of situations, such as
finite temperature and polarization [48], and mass asym-
metry at zero temperature [47]. Those studies yielded an
optimistic outlook for their higher-dimensional counter-
parts, i.e. this work. Still, a word of caution is in order

regarding this method. While conventional Metropolis-
based methods are on solid mathematical footing at van-
ishing polarization, the CL approach remains a method
under construction. A discussion of the issues is beyond
the scope of this work, but these are being investigated by
us and other groups in the lattice QCD area (see e.g. [69–
73]). We emphasize that the calculations presented below
display the same runtime features as our prior 1D stud-
ies which, together with the self-consistency of the results
and the agreement with other methods in the balanced
case and the virial expansion at finite polarization, gives
some confidence on the reliability of the answers.

Results – To characterize the universal thermodynam-
ics of the polarized UFG, we computed the density n,
magnetization m, and normalized magnetic susceptibil-
ity χ̄M = ∂m̄/∂(βh) with m̄ = m/n(βh=0) as functions
of the dimensionless chemical potential βµ = β(µ↑ +
µ↓)/2, and the dimensionless chemical potential differ-
ence βh = β(µ↑ − µ↓)/2. The path integral form of
the thermal expectation values of n and m is obtained
by differentiating lnZ with respect to µ and h. The
magnetic susceptibility, which becomes the Pauli suscep-
tibility in the noninteracting case, is then derived from
the magnetic EOS. To evaluate such path integrals, we
discretized spacetime into a (3+1)-dimensional lattice of
spatial volume V = L3, with L = `Nx, Nx = 7, 9, 11,
lattice spacing ` = 1, and periodic boundary conditions.
For the temporal direction, we chose Nτ = 160, with
temporal lattice spacing τ = 0.05`2, and anti-periodic
boundary conditions for the fermion fields. Note that,
while we varied the spatial extent of the box in our cal-
culations, we kept β = τNτ = 8.0 fixed. Our choice for
the latter determines the thermal de Broglie wavelength
λT =

√
2πβ ' 7.0 being consistent with the continuum-

limit window 1 = `� (λT , λF )� L = Nx`, where λF =

2π/kF is the Fermi wavelength, and kF = (3π2n)−
1
3 is

the Fermi momentum at the given density. Thus, the
computational challenge, besides the sign problem, is
that of opening that window of scales by making Nx and
β as large as possible, in that order, and staying in a
dilute regime to suppress artifacts associated with the
ultraviolet energy cutoff imposed by the lattice. Note
that the reliability of calculations based on our present
set of spacetime lattice parameters has been analyzed in
detail in the past [74–79].

The bare coupling constant g in the Hamilton operator
was fixed to the two-body bound-state threshold using
Lüscher’s formula [80, 81], as in Ref. [82]. Under those
conditions, we varied the asymmetry parameter over the
range βh ∈ [0.0, 2.0] (corresponding to T ≥ h/2), and the
chemical potential in the interval βµ ∈ [−3.0, 2.5], cover-
ing the semiclassical regime (at low fugacities zs = eβµs ,
where the virial expansion is valid) to the fully quan-
tum mechanical regime at large positive βµ, including a
small region below the superfluid transition temperature
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FIG. 1. Top: Density of the balanced UFG obtained by
CL (blue squares), in units of the noninteracting unpolarized
density n0 as a function of the dimensionless average chem-
ical potential βµ. Also shown: third-order virial expansion
(dashed line), experimental results of Refs. [83, 87] (red cir-
cles), and theoretical results obtained by bold diagrammatic
Monte Carlo [87] (dark diamonds) and determinantal hybrid
Monte Carlo [82] (light diamonds). Bottom: Compressibility
κ as derived from the density EOS (see Supplemental Ma-
terial) in units of its noninteracting ground-state value κ0,
as a function of the pressure P normalized by the noninter-
acting ground-state pressure P0 (blue squares), compared to
experimental values [83] (red circles) and third-order virial
expansion (dashed line). Statistical uncertainties for the CL
results are on the order of the symbol sizes. Shaded areas
indicate the superfluid phase.

for the unpolarized system, at (βµ)c ' 2.5 [83–86].
To validate our results, we use prior lattice MC [82],

diagrammatic MC [87] and MIT experimental [83, 87]
results obtained in the unpolarized limit (first measured
in [88, 89] and computed with MC in [90]), as well as the
third-order virial expansion at finite polarization, which
reads

n− n0 =
Q1

V

[
2∆b2z↑z↓ + 3

∆b3
2

(z2↑z↓ + z↑z
2
↓)

]
, (3)

m−m0 =
Q1

V

[
∆b3(z2↑z↓ − z↑z2↓)

]
, (4)

where Q1 is the two-species single-particle partition func-
tion, V is the spatial volume, and in the continuum
Q1/V → 2/λ3T . The interacting total density is given
by n, n0 = n0(βµ, βh) is the noninteracting total den-
sity, m = n↑ − n↓ is the magnetization of the inter-
acting system, and m0 = m0(βµ, βh) is the associated
noninteracting magnetization. The above coefficients are
∆bj = bj − b0j , where b0j = (−1)j−1j−5/2 are the virial
coefficients of the noninteracting gas, and b2 = 3/(4

√
2),

b3 ≈ −0.29095 (see, e.g., Refs. [36, 91]) are the coeffi-
cients of the unitary gas. The coefficient b4 is also known
for the unpolarized gas: b4 = 0.078(18) (see Ref. [92]),
but two separate coefficients are needed at that order in
the polarized case.

For the parameter region studied, we find that our
βh = 0 results are in excellent agreement with the
third-order virial expansion for βµ . −1; see Fig. 1
for the density EOS and the isothermal compressibil-
ity κ = (1/n)(∂n/∂P )|T with P being the pressure and n
being the total density. Moreover, our results reproduce
closely the existing results from lattice MC [82], dia-
grammatic MC [87], and the MIT experiments [83, 87]
in the unpolarized limit, up to βµ = 2.0, which reflects
the smallness of the systematic effects in that parame-
ter range. The smoothness of the curve connecting the
data points shows that statistical effects are also well
controlled and are roughly of the size of the symbols.
For βµ > 2.0, on the other hand, systematic effects in
all state-of-the-art calculations, namely finite-range and
finite-volume effects, become more important and under-
lie the observed deviation from the MIT measurements
at low temperature, i.e. close to and below the superfluid
phase transition. Still, some indication of the appearance
of the phase transition is visible in our present data as a
sharp peak in the compressibility close to P/P0 ≈ 0.5, in
accordance with experiment.

Given the excellent agreement of our results for the
balanced UFG with existing theoretical and experimen-
tal data above the superfluid phase transition, we now
proceed to the polarized case. In Fig. 2, we present our
main results: density EOS normalized by the density of
the noninteracting gas n0(βµ, βh=0) as a function of βµ
(left panel) for βh = 0, 0.4, . . . , 2.0; magnetization (cen-
tral panel) normalized by the interacting density of the
balanced system n(βµ, βh = 0) as well as magnetic sus-
ceptibility (right panel) as a function of the asymmetry
parameter βh for βµ = −3,−2, . . . , 2.

For the density and magnetization EOSs, we again find
excellent agreement with the virial expansion for suffi-
ciently negative βµ. However, we also observe that the
regime of validity of the expansion appears to shrink
as βh is increased, see left panel of Fig. 2. Indeed,
for βh = 2.0, the third-order virial expansion clearly de-
viates from our nonperturbative results for βµ & −1, as
opposed to the balanced case discussed above.
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FIG. 2. Left: Density of the UFG in units of the noninteracting density from bottom to top: βh = 0 (circles), 0.4 (octagons),
0.8 (hexagons), 1.2 (pentagons), 1.6 (squares), 2.0 (triangles), compared to the third-order virial expansion (dashed lines).
Colors encode fixed values of βµ shown in all panels. Center: Magnetization in units of the interacting density for the balanced
system as a function of βh for several values of βµ. For βµ ≤ −1.0, third-order virial expansion is shown with dashed lines.
Right: Dimensionless magnetic susceptibility χ̄M as a function of βh (symbols) compared to the corresponding susceptibility
of the free Fermi gas χ̄0

M (dotted lines) at equal chemical potential and asymmetry (color and shape coding as in other panels).
Inset: Ratio χ̄M/χ̄

0
M as a function of βµ at βh = 0.4.

As βµ is increased, the EOSs obtained for different
values of βh approach the EOS of the balanced system.
This is not unexpected, as the relative asymmetry h/µ
decreases when βµ is increased at fixed βh. Of course, the
approach to the balanced EOS should happen at progres-
sively larger values of βµ when βh is increased, which is
indeed the case and can be seen in the left panel of Fig. 2.
As the balanced system is known to be governed by a su-
perfluid ground state above a critical value of βµ, this
observation also suggests that the critical temperature
decreases with increasing spin asymmetry, in line with
(semi-)analytic studies [25, 26, 84, 85, 93, 94] and lat-
tice MC studies of a slightly spin-imbalanced UFG using
reweighting techniques [95].

Our discussion of the density EOS at finite spin asym-
metry carries over to the magnetization m (Fig. 2, cen-
ter). Similar to the density, the results for m match the
third-order virial expansion for large negative values of
βµ. As βµ is increased, however, our nonperturbative
results clearly start to deviate from the virial expan-
sion. For βµ = 2.0, i.e. close to the critical value of
the balanced system, we observe that m only shows a
very mild dependence on βh. As m is expected to be
small in the superfluid phase (the response to h being
suppressed by the pairing gap, see e.g. [96]), our results
suggest that the system remains close to the superfluid
phase for βh . 2, provided that βµ is fixed close to its
critical value (βµ)c ' 2.5 for the balanced case. Suffi-
ciently below (βµ)c, i.e. at sufficiently high temperature,
the system can easily “magnetize” by increasing βh.

To supplement our discussion of magnetic properties of
the UFG, we also show results for the magnetic suscepti-
bility χ̄M , which measures the response under a variation
of the spin asymmetry (Fig. 2, right panel). In the nonin-
teracting gas at low effective magnetic field βh, the sus-

ceptibility is well approximated by the field-independent
Pauli susceptibilty. For negative βµ, corresponding to
the very dilute limit, our results for χ̄M of the UFG ap-
proach those for the free Fermi gas. Interestingly, even
for βµ close the critical point, the functional form of the
susceptibility of the interacting system is still very simi-
lar to that of the free Fermi gas, however, rescaled by a
dimensionless factor. The latter is shown in the inset in
the right panel of Fig. 2 at βh = 0.4.

Let us finally comment on the dependence of the super-
fluid critical temperature Tc on βh. As mentioned above,
all of our results display a rather mild dependence on βh
for βµ & 2.0, which suggests a rather mild dependence of
Tc as well, at least in the range 0 ≤ βh ∼ 2.0. This ob-
servation is also supported by a computation of the com-
pressibility: as we increase βh, we only observe a very
slight shift of the maximum to lower temperatures com-
pared to the balanced case (see Supplemental Material).
This shift appears to be smaller than in (semi-)analytic
studies [25, 26, 84, 85, 93, 94]. However, further work is
needed to resolve this dependence quantitatively.
Summary and conclusions – We carried out a nonper-

turbative characterization of the density and magneti-
zation EOS of the UFG at finite temperature. To that
end, we implemented a finite-temperature stochastic lat-
tice approach that addresses the sign problem by going
to the complex plane, i.e. we used the complex Langevin
approach and presented our results as a function of βµ
and βh. We emphasize that those results are experimen-
tally testable predictions [97] for universal properties of
quantum many-body physics in the unitary limit, as real-
ized in particular with ultracold gases. In the unpolarized
case, we recover state-of-the-art results. At finite polar-
ization, our answers agree with the third-order virial ex-
pansion for βµ . −2.0, where the expansion is expected
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to be valid. As in our 1D studies [48], however, the expan-
sion deteriorates as βh is increased. For increasing βµ, we
find that the density EOS at finite asymmetry approaches
the EOS of the balanced system. That approach is “de-
layed” when βh is increased, suggesting a decrease of the
critical temperature associated with the superfluid phase
transition; this is as expected since h tends to facilitate
Cooper pair breaking. Our results for the magnetiza-
tion support this interpretation and suggest a mild βh
dependence even up to βh = 2.0. The present work
does not only set the stage for future ab initio stud-
ies of this dependence but also of key features in the
low-temperature regime, such as phase separation associ-
ated with the Chandrasekhar-Clogston limit, which has
already attracted tremendous attention for many years
now, both from the experimental [28–30, 36, 37, 98] and
theoretical side (see, e.g., Refs. [84, 99–105]).
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