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Observation of neutrinoless double beta decay, a lepton number violating process that has been
proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimen-
tal effort. Relating nuclear decay rates to high-energy, beyond the Standard Model (BSM) physics
requires detailed knowledge of non-perturbative QCD effects. Using lattice QCD, we compute the
necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that
contribute to this decay via the leading order π− → π+ exchange diagrams. Utilizing our result and
taking advantage of effective field theory methods will allow for model-independent calculations of
the relevant two-nucleon decay, which may then be used as input for nuclear many-body calcula-
tions of the relevant experimental decays. Contributions from short-range operators may prove to
be equally important to, or even more important than, those from long-range Majorana neutrino
exchange.

Introduction.– Neutrinoless double beta decay
(0νββ) is a process that, if observed, would reveal viola-
tions of symmetries fundamental to the Standard Model,
and would guarantee that neutrinos have nonzero Ma-
jorana mass [1, 2]. Such decays can probe physics be-
yond the electroweak scale and expose a source of lepton-
number (L) violation which may explain the observed
matter-antimatter asymmetry in the universe [3, 4]. Ex-
isting and planned experiments will constrain this novel
nuclear decay [5–16], but the interpretation of the result-
ing decay rates or limits as constraints on new physics
poses a tremendous theoretical challenge.

The most widely discussed mechanism for 0νββ is that
of a light Majorana neutrino, which can propagate a long
distance within a nucleus. However, if the mechanism in-
volves a heavy scale, Λββ , the resulting L-violating pro-
cess can be short-ranged. While näıvely short-range op-
erators are suppressed compared to long-range interac-
tions due to the heavy mediator propagator, in the case
of 0νββ, the long-range interaction requires a helicity flip
and is proportional to the mass of the light neutrino. In a
standard seesaw scenario [17–21], this light neutrino mass
is similarly suppressed by the same large mass scale, so
the relative importance of long- versus short-range con-
tributions is dependent upon the particle physics model
under consideration and in general cannot be determined

until the nuclear matrix elements for both types of pro-
cesses are computed.

Both long- and short-range mechanisms present sub-
stantial theoretical challenges if we hope to connect high
energy physics with experimentally observed decay rates.
The former case is difficult because one must understand
long-distance nuclear correlations. In the latter case the
short-distance physics is masked by QCD effects, requir-
ing non-perturbative methods to match few-nucleon ma-
trix elements to Standard Model operators.

Effective field theory (EFT) arguments show that at
leading order (LO) in the Standard Model, there are nine
local four-quark operators that can contribute to 0νββ
decays [22, 23]. Further matching to a nuclear EFT [22]
shows that, at lowest order, there are up to three impor-
tant processes—a negatively charged pion in the nucleus
can be converted to a positively charged pion, releasing
two electrons (ππee operators), a neutron can be con-
verted to a proton plus a positively charged pion, also
releasing two electrons (NNπee operators), and finally,
two neutrons can be converted to two protons plus two
electrons (NNNNee operators). As long as the LO ππee
operators are not forbidden by symmetries, the LO con-
tribution to the nuclear 0νββ transition matrix element
in the Weinberg counting scheme ([24, 25]) will be given
by the ππee operators within the pion exchange diagram
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shown in the left panel of Figure 1. More recent EFT
analyses for operators relevant to 0νββ have indicated
that the contact operators, NNNNee, may be enhanced
in which case they would also appear at LO [26].

〈Ω|Π+(tf ,pf)O(0)Π+(ti,pi)|Ω〉

FIG. 1. Left: the leading order contribution to 0νββ via
short-range operators occurs within a long-distance pion ex-
change diagram. The nucleons (solid lines) exchange charged
pions (dashed), which emit two electrons (lines with arrow-
heads). Right: the LECs associated with the operators in
the left panel may be calculated through a simpler π− → π+

transition. Here, the lines represent quarks.

In this Letter we determine the matrix elements of the
relevant ππee operators and their associated low energy
constants (LECs) for chiral perturbation theory (χPT)
using lattice QCD (LQCD), a non-perturbative numeri-
cal method with fully controllable systematics. We per-
form extrapolations in all parameters characterizing de-
viations from the physical point, including quark mass
and lattice spacing a, which controls effects from the dis-
cretization of space and time.

Method.– Using the EFT framework, it is not nec-
essary to calculate the full nn → ppee transition shown
in the left panel of Figure 1. Instead, we can perform
the much more computationally tractable calculation of
the on-shell π− → π+ transition in the presence of exter-
nal currents (four-quark operators). Once the LECs are
determined, calculating the true off-shell process can be
dealt with naturally within the EFT framework. From
a LQCD perspective, this single pion calculation is com-
putationally far simpler than the two nucleon calculation
due to absence of a signal-to-noise problem [27] and com-
plications in accounting for scattering states in a finite
volume [28, 29].

We calculate matrix elements for the following relevant
four-quark operators described in Ref. [22]:

O++
1+ =

(
q̄Lτ

+γµqL
) [
q̄Rτ

+γµqR
]
,

O++
2+ =

(
q̄Rτ

+qL
) [
q̄Rτ

+qL
]

+
(
q̄Lτ

+qR
) [
q̄Lτ

+qR
]
,

O++
3+ =

(
q̄Lτ

+γµqL
) [
q̄Lτ

+γµqL
]

+
(
q̄Rτ

+γµqR
) [
q̄Rτ

+γµqR
]
, (1)

where the Takahashi bracket notation () or [] indicates
which color indices are contracted together [30]. We have
omitted parity odd operators which do not contribute to
the π− → π+ transition, as well as the vector operators
which are suppressed by the electron mass, as discussed
in Ref. [22]. In addition, we calculate the color-mixed
operators which arise through renormalization from the

mπ ∼ 310 MeV mπ ∼ 220 MeV mπ ∼ 130 MeV

a(fm) V mπL V mπL V mπL

0.15 163 × 48 3.78 243 × 48 3.99

0.12 243 × 64 3.22

0.12 243 × 64 4.54 323 × 64 4.29 483 × 64 3.91

0.12 403 × 64 5.36

0.09 323 × 96 4.50 483 × 96 4.73

TABLE I. List of HISQ ensembles used for this calculation,
showing the volumes (V = L3×T ) studied for a given lattice
spacing and pion mass.

electroweak scale to the QCD scale [23]:

O′++
1+ =

(
q̄Lτ

+γµqL
] [
q̄Rτ

+γµqR
)
,

O′++
2+ =

(
q̄Lτ

+qL
] [
q̄Lτ

+qL
)

+
(
q̄Rτ

+qR
] [
q̄Rτ

+qR
)
.(2)

The analogous color-mixed operator O′++
3+ is identical to

O++
3+ and is therefore omitted.

To determine the matrix elements for the ππee op-
erators, we have performed a LQCD calculation using
the publicly available highly-improved staggered quark
(HISQ) [31] gauge field configurations generated by the
MILC collaboration [32, 33]. The set of configurations
used is shown in Table I. With this set we perform
extrapolations in the lattice spacing, pion mass, and
volume. On these configurations we chose to produce
Möbius domain wall quark propagators [34–36] due to
their improved chiral symmetry properties, which sup-
presses mixing between operators of different chirality.
To further improve the chiral properties, we first per-
formed a gradient flow method to smooth the HISQ con-
figurations [37–39], see Ref. [40] for details. This action
has been successfully used to compute the nucleon axial
coupling, gA, with 1% precision [41–43]. For each ensem-
ble we have generated quark propagators using both wall
and point sources on approximately 1000 configurations.

The calculation of the matrix elements proceeds along
the same lines as calculations of K0- [44–52], D0-
[50, 53] and B0

(s)-meson mixing [54–57] or NN̄ oscilla-

tions [58, 59], and involves only a single light quark inver-
sion from an unsmeared point source at the time where
the four-quark operator insertion occurs. The propaga-
tors are then contracted to produce a pion at an earlier
time (source) and later time (sink). Because no quark
propagators connect the source to the sink, we can ex-
actly project both source and sink onto definite momen-
tum (allowing only zero momentum transfer at the oper-
ator) without the use of all-to-all propagators.

Results.– In Figure 2, we show representative plots
on the near-physical pion mass ensemble (V = 483 × 64,
a = 0.12 fm, mπ ∼ 130 MeV), of the ratio

Ri(t) ≡ C3pt
i (t, T − t)/ (Cπ(t)Cπ(T − t)) , (3)
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FIG. 2. An example of our lattice results for different op-
erators on the near physical pion mass ensemble with a '
0.12 fm.

where C3pt
i is the three-point function with a four-quark

operator labeled by i at t = 0 and the sink (source) at
time tf = t (ti = T − t),

C3pt
i (tf , ti) =

∑
x,y,α

〈α|Π+(tf ,x)Oi(0,0)Π+(ti,y)|α〉

× e−EαT (4)

where α labels QCD eigenstates, and the pion interpo-
lating field is Π+ = (Π−)† = d̄γ5u. Cπ is the pion corre-
lation function. Using relativistic normalization,

Cπ(t) =
∑
x

∑
α

〈α|Π+(t,x)Π−(0,0)|α〉e−EαT

=
∑
n

|Zπn |2
2Eπn

(
e−E

π
nt + e−E

π
n(T−t)

)
+ · · · , (5)

where Zπn = 〈Ω|Π+|n〉, Ω represents the QCD vacuum,
and the · · · represent thermally suppressed terms. One
can show that the ratio correlation function is given in
lattice units by

Ri(t) =
a4〈π|O++

i+ |π〉
(a2Zπ0 )2

+Re.s.(t) , (6)

where |π〉 is the ground state pion and the excited state
contributions are suppressed exponentially by their mass
gap relative to the pion mass, Re.s.(t) ∝ e−(Eπn−Eπ0 )t.
The overlap factors Z0

π are determined in the analysis of
the two-point pion correlation functions. For brevity we
henceforth write the matrix elements of these operators
as Oi = 〈π|O++

i+ |π〉 and attach a prime as appropriate.
We find excellent signals on nearly all ensembles, re-

quiring only a simple fit to a constant. This is likely
due to the fact that in the ratio defined in Equation 3
the contribution from the lowest thermal pion state is
eliminated, which we find to be the leading contamina-
tion to the pion correlation function within the relevant

time range. We also find little variation of the ratio us-
ing either wall or point sources. This gives us additional
confidence that excited state contamination is negligible
within the time range plotted in the left panel of Figure 2.
A preliminary version of this analysis was presented in
Ref. [60]. Excited state contamination is studied further
in the Supplementary Material.

After extracting the matrix elements on each ensem-
ble, we perform extrapolations to the continuum, physi-
cal pion mass, and infinite volume limits. It is straight-
forward to include these new operators in Chiral Pertur-
bation Theory (χPT) [61] and to derive the virtual pion
corrections which arise at next-to-leading order (NLO)
in the chiral expansions,

O1 =
β1Λ4

χ

(4π)2

[
1 + ε2π

(
ln(ε2π)− 1 + c1

) ]
,

O2 =
β2Λ4

χ

(4π)2

[
1 + ε2π

(
ln(ε2π)− 1 + c2

) ]
,

O3

ε2π
=
β3Λ4

χ

(4π)2

[
1− ε2π

(
3 ln(ε2π) + 1− c3

) ]
, (7)

as described in some detail in the supplemental material.
In these expressions

Λχ = 4πFπ , επ =
mπ

Λχ
, (8)

where Fπ = Fπ(mπ) is the pion decay constant at a given
pion mass, normalized to be F physπ = 92.2 MeV at the
physical pion mass, Λχ is the chiral symmetry breaking
scale and ε2π is the small expansion parameter for χPT.
The pion matrix elements for O′++

1+ and O′++
2+ have an

identical form to O++
1+ and O++

2+ respectively but have in-
dependent low-energy constants (LECs), β′i and c′i which
describe the pion mass dependence. These expressions
can be generalized to incorporate finite lattice spacing
corrections [62] arising from the particular lattice action
we have used [40] and finite volume corrections [63] which
arise from virtual pions that are sensitive to the finite
periodic volume used in the calculations. Details of the
derivation of the formula in χPT and the extension to
incorporate these lattice QCD systematic effects are pre-
sented in the supplemental material. In addition to the
matrix elements Oi, the various LECs βi and ci are de-
termined in this work.

The lattice QCD results are renormalized non-
perturbatively following the Rome-Southampton
method [64] with a non-exceptional kinematics-
symmetric point [65]. More precisely, we compute the
relevant Z-matrix in the RI/SMOM (γµ, γµ)-scheme [66].
We implement momentum sources [67] to achieve a high
statistical precision and non-perturbative scale evolution
techniques [68, 69] to run the Z-factors to the common
scale of µ = 3 GeV. Further details about the renor-
malization procedure are provided in the supplemental
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TABLE II. Resulting matrix elements extrapolated to the
physical point, renormalized in RI/SMOM and MS, both at
µ = 3 GeV.

RI/SMOM MS

Oi[GeV]4 µ = 3 GeV µ = 3 GeV

O1 −1.91(13)× 10−2 −1.89(13)× 10−2

O′1 −7.22(49)× 10−2 −7.81(54)× 10−2

O2 −3.68(31)× 10−2 −3.77(32)× 10−2

O′2 1.16(10)× 10−2 1.23(11)× 10−2

O3 1.85(10)× 10−4 1.86(10)× 10−4

material. One advantage of our mixed-action setup is
that the renormalization pattern is the same as in the
continuum (to a very good approximation) and does not
require the spurious subtraction of operators of different
chirality.

The renormalized operators, extrapolated to the con-
tinuum, infinite volume, and physical pion mass (defined
by mphys

π = 139.57 MeV and F physπ = 92.2 MeV) limits
are given in Table II in both RI/SMOM and MS schemes
at µ = 3 GeV. An error breakdown for the statistical
and various systematic uncertainties is given in the sup-
plemental material.

The correlation between these RI-SMOM matrix ele-
ments are given in the supplemental material. The ex-
trapolations of these operators to the physical point are
presented in Figure 3 with the dashed vertical line rep-
resenting the physical pion mass. The small value of O3

reflects the fact that the O++
3+ operator is suppressed in

the chiral expansion, vanishing in the chiral limit. In ad-
dition to the full MAEFT extrapolations (including infi-
nite volume), we performed further extrapolations with-
out including mixed-action and/or finite volume effects,
and found all results to be consistent, indicating that
mixed-action and finite volume effects are mild. These
various analysis options are all available in Ref. [70] pro-
vided with this publication. Loss function minimization
is performed using Ref. [71].

We can compare the values of the matrix elements de-
termined here in MS to those in Ref. [72], which used
SU(3) flavor symmetry to determine the values, includ-
ing estimated SU(3) flavor-breaking corrections at NLO
in SU(3) χPT. Noting the differences in operator def-
inition pointed out in footnote 5 of Ref. [72], we find
the values of the matrix elements tend to agree at the
one- to two-sigma level, as measured by the O(20−40%)
uncertainties in Ref. [72], indicating the SU(3) chiral ex-
pansion is reasonably well behaved. With the ∼ 1000
measurements per ensemble in the LQCD calculation
presented here, the uncertainties have been reduced to
O(5− 9%). The resulting LECs are reported in Tab. ??
in the supplemental material and the full covariance be-
tween them is provided in Ref. [70].
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FIG. 3. The interpolation of the various matrix elements
(color coded as in Figure 2). In the bottom panel, a zoomed in
version of O3 is displayed. The resulting fit curves/bands are
constructed with Λχ held fixed while changing επ and so the
corresponding LQCD results are adjusted by (F physπ /F lattπ )4

for each lattice ensemble to be consistent with this interpola-
tion. The bands represent the 68% confidence interval of the
continuum, infinite volume extrapolated value of the matrix
elements. The vertical gray band highlights the physical pion
mass.

From the matrix element O3 we can determine the
value of Bπ, the bag parameter of neutral meson mix-
ing in the Standard Model, Bπ = O3/(

8
3m

2
πF

2
π ) =

0.420(23) [0.421(23)] in the RI/SMOM [MS] scheme at
µ = 3 GeV. This is a rather low value, indicating a
large deviation from the vacuum saturation approxima-
tion. However this is expected from the chiral behavior
as discussed, for example, in Ref. [73–75]. As displayed
in Figure ?? in the supplemental material, the value of
Bπ increases at larger pion masses, as expected.

Discussion.– We have performed the first LQCD cal-
culation of hadronic matrix elements for short-range op-
erators contributing to 0νββ. This calculation is com-
plete for matrix elements contributing to leading order
in χPT, including extrapolation to the physical point in
both lattice spacing and pion mass. We have also per-
formed calculations directly at the physical pion mass.

Given these π− → π+ matrix elements, the nuclear
beta decay rate can be determined by constructing the
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nn → pp potential that they induce. The strong contri-
bution to this potential for the matrix elements Oi for
i = 1, 2 is given by

V nn→ppi (|q|) = −OiP1+P2+
∂

∂m2
π

V π1,2(|q|)

= −Oi
g2
A

4F 2
π

τ+
1 τ

+
2

σ1 · qσ2 · q
(|q|2 +m2

π)2
, (9)

where V π1,2(|q|) = −τ1 · τ2 σ1 · qσ2 · q/(|q|2 + m2
π) is the

long-range pion-exchange potential between two nucleons
(labeled 1 and 2) and P+

1,2 project onto the isospin raising
operator for each nucleon. For O3, the potential is

V nn→pp3 (|q|) = −O3

m2
π

g2
A

4F 2
π

τ+
1 τ

+
2

×
[
m2
πσ1 · qσ2 · q

(|q|2 +m2
π)2

− σ1 · qσ2 · q
|q|2 +m2

π

]
, (10)

up to relativistic corrections. These potentials need to
be multiplied by the electrons ēec, the overall prefactor
G2
F

Λββ
and the Wilson coefficient of the effective Standard

Model operators for a given heavy physics model to de-
termine the full nn → ppe−e− amplitude. These ma-
trix elements, once incorporated into nuclear decay rate
calculations, can be used to place limits on the various
BSM mechanisms that give rise to 0νββ, see for exam-
ple [22, 23, 76–85]. The limits on the BSM mechanisms
must also account for the running of these short distance
operators, which can modify their strength by an amount
comparable to the current uncertainties on the nuclear
matrix elements themselves [86].

Modern analyses use Effective Field Theory [22, 23, 84,
85], for which this contribution is the leading order short-
range correction. To go beyond leading order in χPT
additional calculations are necessary. For planned exper-
iments probing 0+ → 0+ nuclear transitions, all next-to
leading order diagrams of type NNπee vanish due to
parity [22]. At next-to-next-to leading order there exist
both NNπee diagrams and NNNNee contact diagrams.
Calculation of the NNNNee contact contribution may
prove important, as diagrams involving light pion ex-
change may need to be summed non-perturbatively in
the EFT framework, causing the contact to be promoted
to LO (as was found for the light neutrino exchange di-
agrams in Ref. [26]). While computing the NNNNee
contact interaction will prove challenging, it is in princi-
ple calculable with current technology and resources [87].
Finally, in order to disentangle long- and short-range
0νββ effects, investigation of quenching of the axial cou-
pling, gA, in multi-nucleon systems [88–90], as well as the
isotensor axial polarizability [91, 92], will also be useful.

Our results can in principle be used to determine con-
tributions from any BSM model leading to short-range
0νββ to leading order in χPT. However, these results
must first be incorporated into nuclear physics models

capable of describing large nuclei. Currently, there is
sizable discrepancy between different models and uncer-
tainty quantification remains difficult, challenges which
will need to be overcome in order to faithfully connect
experiment with theory.
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