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We prove an upper bound on the diffusivity of a dissipative, local and translation invariant
quantum Markovian spin system: D ≤ D0 + (αvLRτ + β ξ) vC. Here vLR is the Lieb-Robinson
velocity, vC is a velocity defined by the current operator, τ is the decoherence time, ξ is the range of
interactions, D0 is a decoherence-induced microscopic diffusivity and α and β are precisely defined
dimensionless coefficients. The bound constrains quantum transport by quantities that can either
be obtained from the microscopic interactions (D0, vLR, vC, ξ) or else determined from independent
local non-transport measurements (τ, α, β). We illustrate the general result with the case of a spin
half XXZ chain with on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain
the sub-ballistic diffusion of conserved densities in a dissipative setting.

Introduction.— Quantum transport processes are at
the heart of experimental studies of unconventional met-
als [1–3], ultracold atomic gases [4–9] and potential spin-
tronic systems [10–14]. It is crucial to have theoretical
tools that connect transport observables to microscopic
processes. In quasiparticle systems such as conventional
metals, Fermi liquid theory and Boltzmann equations of-
fer an excellent and well-understood handle on transport
[15]. For strongly quantum transport regimes, however,
there are many fewer tools available. Controlled theo-
retical work with realistic interactions has largely been
restricted to numerics in one spatial dimension [16–20].

For general ballistic systems, several important, rig-
orous bounds on quantum transport have been estab-
lished. The Mazur-Suzuki inequality bounds the Drude
weight in terms of the overlap of currents with conserved
charges [21–23]. The Lieb-Robinson velocity vLR bounds
the propagation of linearly dispersing collective modes,
such as spin waves [24, 25].

Many important quantum transport processes are dif-
fusive rather than ballistic [26]. A lower bound on the
high-temperature diffusivity has been established for cer-
tain systems with integrability or additional symmetries
[27, 28]. Recently, it was argued that in general local
systems, Lieb-Robinson causality requires that the dif-
fusivity be upper bounded as D . v2LRτth [29]. Here
τth is a ‘local thermalization time’. This relation usefully
identifies key physical ingredients that constrain diffusive
transport. However, it is not totally satisfactory because
a numerical prefactor is undetermined and furthermore
the timescale τth was not precisely defined.

In this work we prove a rigorous and precise upper
bound on the diffusivity of dissipative quantum Marko-
vian spin systems. The full result is given in (22) be-
low. In the limit of long decoherence time τ , the bound
takes the form D ≤ αvLRvCτ . This expression is the dis-
sipative counterpart of the earlier bound [29], and all
quantities on the right hand side will now be precisely
defined. The velocities vLR and vC are straightforwardly
computed given a microscopic Hamiltonian while the di-

mensionless coefficient α and decoherence time τ can be
independently and unambiguously determined from local
non-transport observables. Therefore, this bound can be
precisely verified in experiments. It generalizes the Lieb-
Robinson bound to the diffusive behavior of conserved
densities, in the context of dissipative quantum Marko-
vian dynamics.
Translation invariant Lindbladian dynamics.— Non-

unitary quantum dynamics describes the quantum evo-
lution of a dissipative system coupled to an external en-
vironment. On timescales much longer than the relax-
ation time of the reservoir, the dynamics can be well
approximated as Markovian and hence described by the
Lindblad equation [30, 31]. The final state of Lindbla-
dian non-unitary dynamics is expected to be an infinite
temperature generalized Gibbs ensemble, so our diffusive
dynamics occurs close to this state.

We assume that the external bath couples locally in
space to the degrees of freedom of interest, and preserves
spatial translation invariance. In this case, the most gen-
eral Heisenberg equation of motion for an operator O(t)
on a lattice takes the Lindblad form

Ȯ = i
∑
x

[Hx, O]+c
∑
x,α

(
2Lα†x OLαx −

{
Lα†x Lαx, O

})
, (1)

where x is the lattice index and Hx is a term in the
Hamiltonian localized near lattice site x. The anticom-
mutator {A,B} = AB+BA. The Lαx are decoherence op-
erators localized near site x and c ≥ 0 is the decoherence
strength. It will be important that a Lieb-Robinson ve-
locity exists for such local Lindbladian dynamics [25, 32].

Throughout, we illustrate our general formalism and
results with the example of an infinite, spin-half antifer-
romagnetic XXZ chain with on-site dephasing:

Hx = XxXx+1 + YxYx+1 + ∆ZxZx+1 , Lx = Zx . (2)

Here Xx, Yx, Zx are Pauli matrices acting on spin x ∈ Z
and ∆ > 0 is the anisotropy. The dephasing Lindbladian
is a common phenomenological description of decoher-
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ence due to coupling to a photon or phonon bath [33]. Dif-
fusion in this model was studied numerically in [34–38],
and we will compare with those results. Our approach,
however, is not limited to one dimensional models.

The model (2) conserves spin:
∑
x Żx = 0. More gen-

erally, we require a local charge operator C such that∑
x

Ċx = 0, (3)

where Cx is the operator C translated to site x. A con-
served operator in the sense of (3) has important conse-
quences for the dynamics on the longest timescales, after
all non-conserved operators have decayed. A single, scalar
conserved operator is expected to lead to a diffusive mode
with long wavelength dispersion ω(k) = −iDk2 + . . ., see
e.g. [39]. Here D is the diffusivity and . . . denotes terms
of higher order in the wavevector k. Our objective in the
remainder is to connect the microscopic Lindbladian dy-
namics (1) to the long wavelength hydrodynamic mode,
and in this way bound the diffusivity D in terms of mi-
croscopic quantities.

To exploit the translation invariance of the dynam-
ics, we introduce the linear space of operators Ok with
wavevector k, defined to be the space of all operators O
on an infinite lattice Λ such that

Tx[O] = O eik·x, (4)

where Tx translates operators by a vector x. It will be
useful to take the following basis of operators in Ok. Fix
an origin of the lattice and a direction k̂ of the wavevec-
tor. We can then write the basis elements of Ok as

|Oa) ≡ (Oa)k ≡
∑
x

Tx[Oa]e−ik·x, (5)

where {Oa} is the set of product operators that are lo-

calized in the region {x ∈ Λ |x · k̂ ≥ 0} and are not the
identity at the origin [40]. We drop the k label on the |Oa)
to avoid clutter, this basis gives a canonical isomorphism
between the different Ok. For the example of the XXZ
chain, the {Oa} are strings of Pauli operators starting
at the origin: X0, Y0, Z0, X0X1, X0Y1, . . . , X0I1Y2, . . . ,
where subscripts are lattice indices x ∈ Z. The corre-
sponding basis elements in (5) are then operators such
as (X0Y1)k = . . . + X−1Y0e

ik + X0Y1 + X1Y2e
−ik +

X2Y3e
−2ik + . . ., from which it is clear that (X0Y1)k and

(X1Y2)k only differ by a phase prefactor. This is why the
operators must be taken to start at x = 0.

Translational symmetry implies that the Ok are pre-
served by time evolution. Therefore, it is possible to di-
agonalize ∂t in each k-sector. An eigenoperator Ok ∈ Ok

satisfies

Ȯk = −iω(O,k)Ok, (6)

for some ω(O,k) ∈ C and with Imω ≤ 0. Note that i∂t
is not Hermitian but the negative imaginary part of its

eigenvalues means that time evolution is stable. Diffusion
is then described by a coarse-grained charge operator C̃k

that is an eigenoperator of ∂t with

ω(C̃,k) ≡ Ωk = −iDk2 + o(k2) , (7)

which defines the diffusivity D of the conserved charge.
More generally D may depend on the direction of k, and
this definition works for any fixed direction of k. We will
obtain the operator C̃k explicitly below.

We are able to discuss diffusion as an operator equa-
tion, as in (6) and (7) above, because decoherence causes
operator norms to decay. This is a significant technical
simplification relative to the case of unitary evolution
at finite temperature, where diffusion only occurs within
thermal expectation values. In the following section we
compute Ωk in small k perturbation theory. This will give
an explicit expression for D.
Perturbation theory at small wavevector.— At small k,

we can expand ∂t|Ok
in k. Fixing a direction of k:

∂t|Ok
= L ≡

∑
n≥0

knLn, (8)

which defines superoperators Ln. For example, in the
XXZ chain, the operator (Z0)k ∈ Ok obeys

(Ż0)k = 2(e−ik − 1)(X0Y1)k − 2(e−ik − 1)(Y0X1)k . (9)

With respect to the Pauli string basis, ∂t|Ok
is repre-

sented as a k-dependent matrix. Expanding the coeffi-
cients of the basis elements in (9) at small k we obtain
components of the superoperators in (8). As expected
from conservation of Z, L0|Z0) = 0, while L1|Z0) =
2i|Y0X1)− 2i|X0Y1) and L2|Z0) = |Y0X1)− |X0Y1).

The eigenvalue −iΩk of ∂t|Ok
can be found using stan-

dard second-order perturbation theory in small k (cf. the
memory matrix formalism [41]). At k = 0 we know that
the eigenvector is the conserved charge |C), with vanish-
ing eigenvalue. Therefore, up to order k2:

−iΩk = k(C|L1|C) (10)

+ k2

(C|L2|C)−
∑
E0

a 6=0

(C|L1|E0
a)

1

E0
a

(E0
a|L1|C)

 .
The basis vectors |E0

a) are given by linear combinations of
the |Oa) in (5) with L0|E0

a) = E0
a|E0

a). The correspond-

ing eigenoperator |C̃) = |C)−k
∑
E0

a 6=0 |E0
a) 1
E0

a
(E0

a|L1|C)

is the dressed charge operator to this order. We are as-
suming that the only operator with E0

a = 0 is the sin-
gle conserved charge C. It is straightforward to extend
our analysis to a finite number of conserved charges. We
will be more precise about the absence of additional slow
operators in the following section. The superoperator ∂t
is not antihermitian in general and the eigenoperators
|E0
a) are not necessarily orthogonal. The above pertur-

bation theory formulae retain their standard form, but
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(E0
a|O) is defined to be the coefficient in front of |E0

a)
in the expansion of |O) in the basis {|E0

a)}. The (E0
a|

are elements of a dual vector space to that spanned
by the |E0

a), and hence have opposite dimensionality.
In the case that the operators E0

a are orthogonal, i.e.
tr(E0†

a E
0
b ) = δabtr(E

0†
a E

0
a) for some given k, then we can

write (E0
a|O) = tr(E0†

a O)/tr(E0†
a E

0
a), as usual.

Our main objective is to use the expression (10) to
bound the diffusivity (7) in generality. However, in simple
models such as the dissipative XXZ chain (2) it is pos-
sible to compute the diffusivity by evaluating (10). The
on-site dephasing in that model suppresses Pauli strings
with X and Y terms. For example: Ldis[X0] = −4X0 and
Ldis[X0Y1] = −8X0Y1, where Ldis[O] is the second sum
in (1). The explicit computation is easiest in the limit
c � 1, where the Hamiltonian term in (1) is negligible
compared to the dephasing term. In this limit (10) be-
comes (to leading order in k and c−1)

−iΩk =
k2

8c

∑
A

(Z0|L1|A)(A|L1|Z0) = −k
2

c
, (11)

where in the sum A = X0Y1 and Y0X1. The system is
diffusive with D = c−1 + O(c−2) for strong decoherence
c � 1, cf. [42]. This asymptotic behavior is verified nu-
merically in Fig. 1, showing numerical results for finite c.
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FIG. 1. Diffusivity D of the dissipative XXZ model versus
dephasing strength c, with anisotropies ∆ = 0.5, 1.0, 1.5. The
asymptotic behavior D ∼ 1/c is also shown. Operator spaces
are truncated in numerics so that only Pauli string opera-
tors of length at most n = 7 are kept. Finite-size effects are
strong for small c and indicated by the shaded region, which
is estimated from truncations with n = 6, 8.

The numerical results are obtained using a truncated
space of operators in (5) to evaluate (10). This is a dif-
ferent method compared to previous work, and is rel-
atively straightforward to implement. It works best for
larger values of c where long operators are strongly sup-
pressed by dissipation. These results on the XXZ example
agree with those in the literature [34–38]. In particular,

for 0 < ∆ < 1 the system is known to show ballistic spin
transport in the absence of dephasing (c = 0). There-
fore, while transport is diffusive at nonzero dephasing,
the diffusivity diverges as c→ 0.
Constraints from the Lieb-Robinson bound.— For dif-

fusive rather than ballistic transport, (C|L1|C) must van-
ish in (10). Indeed, |J) = L1|C) is the current operator,
and it is known from the Mazur-Suzuki bound [21, 22]
that if (C|J) 6= 0 at k = 0, transport is ballistic. We
restrict attention to non-ballistic systems [43]. Then the
diffusivity can be rewritten as

D = −
[
(C|L2|C) +

∫ ∞
0

dt (C|L1eL
0tL1|C)

]
, (12)

where 1
E0

a
|E0
a)(E0

a| in (10) has been replaced by an inte-

gral of exp
(
L0t
)
. D is manifestly real in (12) because in a

basis of hermitian operators L0,L2 are real matrices and
L1 is imaginary, and furthermore (C| is a real vector.

To isolate the dynamics of the single conserved den-
sity we make a physical assumption about the spectrum
of the Lindbladian decoherence operators: all local oper-
ators other than the charge density decay exponentially,
at least as fast as e−t/τ . Here τ defines the ‘local deco-
herence time’. The local difference in behavior between
conserved densities and all other operators will be impor-
tant for our argument. Technically, we will require

• Single-mode ansatz: There exist A, τ > 0 such
that any local operator O can be decomposed into
local operators O = γI + O1 + O2, where I is
the identity operator and γ a coefficient, O1 is a
sum of C’s and ‖O2(t)‖ ≤ A‖O‖e−t/τ , ‖Ȯ2(t)‖ ≤
Aτ−1‖O‖e−t/τ for t > 0.

We will bound the diffusivity by the Lieb-Robinson ve-
locity and the decoherence time τ .

Let ‖ · ‖ be any operator norm contracted by the time
evolution (1) [44]. This induces a seminorm (with ‖|I)‖ =
0) for |O) ∈ O0:

‖|O)‖ ≡ lim
k→0

lim
N→∞

N−1‖
∑
x

Tx[O]e−ik·x‖, (13)

where N =
∑

x 1 is the number of lattice sites. For exam-
ple, ‖|Z)‖ = limk→0 limN→∞N−1‖

∑
x Zxe

−ikx‖ = ‖Z‖,
and generally ‖|O)‖ ≤ ‖O‖ , by the triangle inequality.
From the definition (13), this seminorm is also contracted
by time evolution. As a result of contraction in time com-
bined with the single-mode ansatz:

‖|O)‖ ≥ lim
t→∞

‖|O(t))‖ = |(C|O)|‖|C)‖, (14)

bounding the norm of the k = 0 state by its projection
onto the conserved charge.

We use (14) to bound the two terms in the diffusivity
(12). For the first term, let |O) = L2|C) ∈ O0. Then

|(C|L2|C)| ≤ ‖L2|C)‖/‖|C)‖ . (15)
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Given the operator equation of motion, the right-hand
side of (15) is easily calculable.

To bound the second term in (12), take a local operator
O such that |O) = L1|C)+α|C) ∈ O0, with α ∈ C. Then:

(C|L1eL
0tL1|C) = (C|L1eL

0t|O) (16)

= (C| lim
k→0

∂k(LeLt)|O) = (C| lim
k→0

∂k|Ȯ(t)).

The first equality uses L0|C) = 0 and (C|L1|C) = 0;
the second equality uses (C|L0 = 0. In (16), ∂k is de-
fined to be the k-derivative of the components of matri-
ces such as L or vectors such as |O) in the prescribed
basis |Oa) in (5). Explicitly, for any local operator P we
can uniquely write P = cI +

∑
caxTx[Oa] so that in Ok,

|P ) =
∑
caxe

ik·x|Oa) and −i∂k|P ) =
∑
cax(k̂ ·x)|Tx[Oa]),

which is seen to be the first moment of the operator P .
Using (16) in (14) gives the bound∣∣∣∣∫ ∞

0

dt (C|L1eL
0tL1|C)

∣∣∣∣ ≤ ∫ ∞
0

dt
‖∂k|Ȯ(t))‖
‖|C)‖

. (17)

Take an operator J (the current) localized near the
origin such that |J) = L1|C). According to the single-
mode ansatz we can write J = O +

∑
x cxTx[C], where

O is also localized near the origin and for t > 0

‖Ȯ(t)‖ ≤ Aτ−1‖J‖e−t/τ . (18)

We can choose this O as the operator in (16). From the
bound (18) on ‖Ȯ(t)‖ we must now obtain a bound on
‖∂k|Ȯ(t))‖, that appears in (17).

Let Pl for l ∈ R be the projection onto the operator
subspace spanned by all product operators supported on
the half-space k̂ · x ≥ l and let Ql = Id − Pl. By an
adaption [45] of the Lieb-Robinson bound [25, 32] for
(18), there exist A′ ≥ 1 and v, ξ > 0 such that for all
l ∈ R, t > 0,

‖Pl[Ȯ(t)]‖ ≤ A‖J‖τ−1 min{e−t/τ , A′e(vt−l)/ξ}, (19)

‖Ql[Ȯ(t)]‖ ≤ 2A‖J‖τ−1 min{e−t/τ , A′e(vt+l)/ξ}. (20)

The length ξ is the range of microscopic interactions.
We saw that ∂k corresponds to taking the first moment.
Therefore ∂k|Ȯ(t)) = i|O′(t)), with

O′(t) =

∫ ∞
0

dlPl[Ȯ(t)]−
∫ 0

−∞
dlQl[Ȯ(t)]. (21)

Indeed, from Pl[Tx[Oa]] = Tx[Oa] for k̂ · x ≥ l, and van-

ishing otherwise, we have
∫∞
0
dlPl[Tx[Oa]] = k̂ ·x Tx[Oa]

if k̂ ·x ≥ 0, which is precisely the first moment. The sec-
ond integral of Ql similarly takes care of the k̂ · x ≤ 0
terms. Now, ‖∂k|Ȯ(t))‖ ≤ ‖O′(t)‖ and, using (19) and
(20), ‖O′(t)‖ ≤ 3A‖J‖e−t/ττ−1[vt + ξ(1 + t/τ + lnA′)].
Hence, substituting into (17),∣∣∣∣∫ ∞

0

dt (C|L1eL
0tL1|C)

∣∣∣∣ ≤ 3A[vτ + ξ(2 + lnA′)]
‖J‖
‖|C)‖

.

Putting the results together gives the diffusivity bound

D ≤ D0 + (α vLRτ + β ξ) vC . (22)

Here D0 = ‖L2|C)‖/‖|C)‖ is a ‘microscopic’ diffusiv-
ity from the dissipative equation of motion. The Lieb-
Robinson velocity vLR = v and vC = ‖J‖/‖|C)‖ is a
velocity obtained by dividing the current by the charge.
As above τ is the decoherence time and ξ is the range of
microscopic interactions. The dimensionless coefficients
α = 3A and β = 3A(2 + lnA′). Equation (22) establishes
that the diffusivity is bounded by microscopic velocities
and time and lengthscales in the system.

The quantities D0, vLR, vC and ξ can be obtained
from the equations of motion. The quantities A and τ
are instead best determined experimentally or numeri-
cally from the decay of local non-conserved operators.
From equation (18), τ determines the late time decay
rate of the non-conserved part of the local current and
A = maxt>0 ‖Ȯ(t)‖/(τ−1‖J‖e−t/τ ). A′ does not have a
strong effect as it appears in a logarithm in our bound.
Final comments.— The bound (22) has nontrivial con-

sequences for the dephasing XXZ chain. For 0 < ∆ < 1
the diffusivity diverges in Fig. 1 as c → 0. The bound
states that D cannot diverge faster than τ . In the XXZ
model vC = 4 and, from [32], vLR ≤ 2 + ∆ are inde-
pendent of c. Now τ = maxk 1/(−ReE1

k), where E1
k ∈ C

is the first eigenvalue of ∂t|Ok
above the slow mode. We

evaluated this eigenvalue numerically by truncating the
operator space as described around Fig. 1. At ∆ = 0.5
the ratio D/τ = 3.8(2) indeed remains finite as c→ 0.

We end with some broader comments. Firstly, (expo-
nential) locality of interactions and a finite decoherence
time are essential, as otherwise there can be superdiffu-
sive transport [5, 7, 38], where the perturbation theory
(10) is no longer valid due to degeneracies or divergences.

The decoherence-induced decay of operators such as
long Pauli strings is phenomenologically similar to the
decay of the thermal expectation values of those opera-
tors. To obtain a rigorous bound on diffusion in unitary
quantum dynamics in a thermal state, however, there will
be several challenges to overcome. The diffusivity must
be discussed in terms of expectation values rather than
operators, and projections with respect to thermal inner
products are difficult to evaluate (e.g. §5.6 of [46]). The
butterfly velocity may causally constrain finite tempera-
ture transport [29, 47–50], but a temperature-dependent
bound on this velocity has not been established. These
interesting problems are left for future work.

If a rigorous bound of the form D . v2τ + vξ can
indeed be established for diffusion in finite tempera-
ture states, it may shed light on the phenomenon of re-
sistivity saturation [1, 2]. As temperature is increased
τ will typically descrease, but ξ is a microscopic and
temperature-independent lengthscale. Therefore, the re-
sistivity ρ ∝ 1/D & 1/(v2τ + ξv) is able to saturate at
high temperatures where vτ < ξ.



5

ACKNOWLEDGEMENTS

The work of SAH is partially supported by DOE award
DE-SC0018134. XH is supported by a Stanford Graduate
Fellowship.

[1] O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod.
Phys. 75, 1085 (2003).

[2] N. E. Hussey, K. Takenaka, and H. Takagi, Philosophical
Magazine 84, 2847 (2004).

[3] J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Macken-
zie, Science 339, 804 (2013).

[4] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will,
S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt,
D. Rasch, and A. Rosch, Nature Physics 8, 213 (2012),
article.

[5] Y. Sagi, M. Brook, I. Almog, and N. Davidson, Phys.
Rev. Lett. 108, 093002 (2012).

[6] M. Koschorreck, D. Pertot, E. Vogt, and M. Köhl, Na-
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[35] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
[36] J. J. Mendoza-Arenas, S. Al-Assam, S. R. Clark, and

D. Jaksch, Journal of Statistical Mechanics: Theory and
Experiment 2013, P07007 (2013).

[37] M. V. Medvedyeva, T. Prosen, and M. Žnidarič, Phys.
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