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Characterising quantum processes is a key task in the development of quantum technologies, especially at the
noisy intermediate scale of today’s devices. One method for characterising processes is randomised benchmark-
ing, which is robust against state preparation and measurement (SPAM) errors, and can be used to benchmark
Clifford gates. Compressed sensing techniques achieve full tomography of quantum channels essentially at op-
timal resource efficiency. In this work, we show that the favorable features of both approaches can be combined.
For characterising multi-qubit unitary gates, we provide a rigorously guaranteed and practical reconstruction
method that works with an essentially optimal number of average gate fidelities measured with respect to ran-
dom Clifford unitaries. Moreover, for general unital quantum channels we provide an explicit expansion into
a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result,
we obtain a new statistical interpretation of the unitarity – a figure of merit characterising the coherence of a
process.

PACS numbers: 03.65.Wj, 03.67.-a, 02.20.Rt

As increasingly large and complex quantum devices are be-
ing built and the development of fault tolerant quantum com-
putation is moving forward, it is critical to develop tools to
refine our control of these devices. For this purpose, several
improved methods for characterizing quantum processes have
been developed in recent years.

These improvements can be grouped into two broad cate-
gories. The first category includes techniques such as ran-
domised benchmarking (RB) [1–11] and gate set tomogra-
phy (GST) [12], which are more robust to state preparation
and measurement (SPAM) errors. These techniques work by
performing long sequences of random quantum operations,
measuring their outcomes, and checking whether the resulting
statistics are consistent with some physically-plausible model
of the system. In this way, one can characterise a quantum
gate in terms of other quantum gates, in a way that is insen-
sitive to SPAM errors. The amount of information extracted
by such techniques is extremly different. While RB typically
characterises a quantum gate in terms of a single fidelity, GST
yields a complete description of an entire gate set, the state
preparation and the measurement. In effect, the data accqui-
sation for GST requires an exceedingly large effort.

The second category [13–17] provides detailed tomo-
graphic information in a more ressource efficient way. It in-
cludes techniques such as compressed sensing [18–24], ma-
trix product state tomography [25, 26], and learning of local
Hamiltonians and tensor network states [27, 28]. These meth-
ods exploit the sparse, low-rank or low entanglement structure
that is present in many of the physical states and processes that
occur in nature. These techniques are less resource-intensive
than conventional tomography, and therefore can be applied
to larger numbers of qubits. Convex optimization techniques,

such as semidefinite programming, are then used to recon-
struct the underlying quantum state or process.

A recent line of work [29, 30] has attempted to unify these
two approaches to a quantum process tomography scheme,
that is both robust to SPAM errors, and can handle large num-
bers of qubits (provided the quantum process has some suit-
able structure). To achieve this goal, it turns out that the proper
design of the measurements is crucial. SPAM-robust methods
such as randomised benchmarking are known to require some
kind of computationally-tractable group structure, such as that
found in the Clifford group. Subsequently, RB methods were
extended to other groups [31–35]. In this work we focus on
the Clifford group. Clifford gates are motivated by their abun-
dant appearance in many practical applications, such as fault-
tolerant quantum computing [7, 36].

In contrast, compressed sensing methods typically require
measurements with less structure in this context, in that their
4th-order moments are close to those of the uniform Haar
measure. Thus, the key technical question is whether the
seemingly conflicting requirements of sufficient randomness
and desired structure in the measurements can be combined.

In this work, we show that the answer is indeed yes. In lay-
man’s terms, we demonstrate that Clifford-group based mea-
surements are also sufficiently unstructured that they can be
used for compressed sensing. Thus, we develop methods for
quantum process tomography that are resource efficient, ro-
bust with respect to SPAM and other errors, and use mea-
surements that are already routinely acquired in many experi-
ments.

In more detail, we provide procedures for the reconstruction
from so-called average gate fidelities (AGFs), which are the
quantities that are measured in randomised benchmarking. It
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was established that the unital part of general quantum chan-
nels can be reconstructed from AGFs relative to a maximal
linearly independent subset of Clifford group operations [29].
We generalise this result by noting that the Clifford group can
be replaced by an arbitrary unitary 2-design and also explicitly
provide an analytic form of the reconstruction.

Our main result is a practical reconstruction procedure for
quantum channels that are close to being unitary. Let d be
the Hilbert space dimension, so that a unitary quantum chan-
nel can be described by roughly d2 scalar parameters. The
protocol is rigorously guaranteed to succeed using essentially
order of d2 AGFs with respect to randomly drawn Clifford
gates, and we also prove it to be stable against errors in the
AGF estimates. In this way we generalise a previous recov-
ery guarantee [30] from AGFs with 4-designs to ones with the
more relevant Clifford gates.

Conversely, we prove that the sample complexity of our re-
construction procedure is optimal in a simplified measurement
setting. Here, we assume that independent copies of the chan-
nel’s Choi state are measured and use direct fidelity estimation
[27, 37] and information theoretic arguments [13] to show that
the dimensional scaling of our reconstruction error is optimal
up to log-factors. As a side result, we also find a new inter-
pretation of the unitarity [8] – a figure of merit that captures
the coherence of noise. We show that this quantity can be
estimated directly from AGFs, rather than simulating purity
measurements [8].

In summary, we provide a protocol for quantum process
tomography that fulfils all of the following desiderata:

(i) It should be based on physically reasonable and feasible
measurements,

(ii) make use of them in a sample optimal fashion,

(iii) exploit structure of the expected/targeted channel (here
low Kraus rank reflecting quantum gates), and

(iv) be stable against SPAM and other possible errors.

In this sense, we expect our scheme to be of high importance
and practically useful in actual experimental settings in fu-
ture quantum technologies [38]. It adds to the information ob-
tained from mere randomised benchmarking in that it provides
actionable advice, especially regarding coherent errors. Such
advice is particularly relevant for fault tolerant quantum com-
putation: Refs. [39, 40] indicate that it is coherent errors that
lead to an enormous mismatch between average errors, which
are estimated by randomised benchmarking, and worst-case
errors, reflected by fault tolerance thresholds.

Our main technical contributions are results for the second
and fourth moments of AGF measurements with random Clif-
ford gates. For the second moment we provide an explicit
formula improving over the previous lower bound [30]. In the
case of trace-preserving and unital maps, our analysis gives
rise to a tight frame condition. In order to prove a bound on the
fourth moment, we derive – as a more universal new technical

tool – a general integration formula for the fourth-order diag-
onal tensor representation of the Clifford group. The proof
builds on recent results on the representation theory of the
multi-qubit Clifford group [41–43]. Our result is the Clif-
ford analogue to Collins’ integration formula for the unitary
group [44, 45] for fourth orders, which we expect to also be
useful in other applications. In the following, we present the
precise formulation of our results. The proofs and technical
contributions are given in the Supplemental Material [46].

A linear map from the set of Hermitian operators on a d-
dimensional Hilbert space to itself is referred to as map. A
quantum channel is a completely positive map that in addition
preserves the trace of a Hermitian operator and, thus, maps
quantum states to quantum states. A map is unital if the iden-
tity operator (equivalently, the maximally mixed state) is a
fixed point of the map. We define the average gate fidelity
(AGF) between a map X and a quantum gate (i.e. a unitary
quantum channel) U : ρ 7→ UρU† associated with a unitary
matrix U ∈ U(d) as

Favg(U ,X ) =
∫

dψ 〈ψ|U†X ( |ψ 〉〈ψ |)U |ψ〉 , (1)

where the integral is taken according to the uniform (Haar)
measure on state vectors.

The Clifford group constitutes a particularly important fam-
ily of unitary gates that feature prominently in state-of-the-art
quantum architectures. Moreover, it was shown that for many-
qubit systems (i.e. d = 2n), any unital and trace-preserving
map is fully characterised by its AGFs (1) with respect to the
Clifford group [29]. A detailed analysis of the geometry of
unital channels was previously given in Ref. [47]. There, it
was shown that a quantum channel is unital if and only if it can
be written as an affine combination of unitary gates. (Affine
here means that the expansion coefficients sum to 1. Unlike
convex combinations, they are however not restrict to being
non-negative.) Motivated by the result for Clifford gates, one
can ask more generally: What are the sets of unitary gates that
span the set of unital and trace-preserving maps?

A general answer to this question can be given using the
notion of unitary t-designs. Unitary t-designs [3, 48] (and
their state-cousins, spherical t-designs [49, 50], respectively)
are discrete subsets of the unitary group U(d) (resp. com-
plex unit sphere) that are evenly distributed in the sense that
their average reproduces the Haar (resp. uniform) measure
over the full unitary group (resp. complex unit sphere) up to
the t-th moment. The multi-qubit Clifford group, for exam-
ple, forms a unitary 3-design [51–53]. For spherical designs,
a close connection between informational completeness for
quantum state estimation and the notion of a 2-design has been
established in Ref. [50], see also Refs. [54–56]. A similar re-
sult holds for quantum process estimation, and is the starting
point of our work. Indeed, the following is essentially due to
Ref. [57]. We give a concise proof in form of the slightly more
general Theorem S.36 in the Supplemental Material [46] F.

Proposition 1 (Informational completeness and unitary de-
signs). Let {Uk}Nk=1 be the gate set of a unitary 2-design,
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represented as channels. Every unital and trace-preserving
map X can be written as an affine combination X =
1
N

∑N
k=1 ck(X )Uk of the Uk’s. The coefficients are given by

ck(X ) = CFavg(Uk,X )− C
d +1, whereC = d(d+1)(d2−1).

Hence, every unital and trace-preserving map is uniquely
determined by the AGFs with respect to an arbitrary unitary
2-design.

Clifford gates are a particularly prominent gate set with
this 2-design feature. However, its cardinality scales super-
polynomially in the dimension d. For explicit characterisa-
tions, this is far from optimal. However, in certain dimen-
sions there exist subgroups of the Clifford group with cardi-
nality proportional to d4 that also form a 2-design [48, 58].
More generally, order of d4 log(d) Clifford gates drawn
i.i.d. uniformly at random are an approximate 2-design [59].
From Proposition 1, we expect that such randomly gener-
ated approximate 2-designs yield approximate reconstruction
schemes for unital channels.

Our main result focuses on the particular task of recon-
structing multi-qubit unital channels that are close to being
unitary, i.e. well-approximated by a channel of Kraus rank
equal to one. Techniques from low-rank matrix reconstruc-
tion [13, 14, 18, 19, 24, 60] allow for exploiting this additional
piece of information in order to reduce the number of AGFs
required to uniquely reconstruct an unknown unitary gate.

Suppose we are given a list of m AGFs

fi = Favg(Ci,X ) + εi (2)

– possibly corrupted by additive noise εi – between the un-
known unitary gate X and Clifford gates Ci that are chosen
uniformly at random. In order to reconstruct X from these
observations, we propose to perform a least-squares fit over
the set of unital quantum channels, i.e.

minimise

m∑
i=1

(Favg(Ci,Z)− fi)2

subject to Z is a unital quantum channel.

(3)

We emphasise that this is an efficiently solvable convex op-
timisation problem. The feasible set is convex since it is the
intersection of an affine subspace (unital and trace-preserving
maps) and a convex cone (completely positive maps).

Valid for multi-qubit gates (d = 2n), our second main
result states that this reconstruction procedure is guaranteed
to succeed with (exponentially) high probability, provided
that the number m of AGFs is proportional (up to a log(d)-
factor) to the number of degrees of freedom in a general
unitary gate. The error of the reconstructed channel is
measured with the Frobenius norm in Choi representation
‖ · ‖, see the Supplemental Material [46] for details. Here,
we give a concise statement for the case of unitary gates. A
more general version – Theorem S.16 in the Supplemental
Material [46] – shows that the result can be extended to cover
approximately unitary channels.

Theorem 2 (Recovery guarantee for unitary gates).
Fix the dimension d = 2n. Then,

m ≥ cd2 log(d) (4)

noisy AGFs with randomly chosen Clifford gates suffice with
high probability (of at least 1− e−γm) to reconstruct any uni-
tary quantum channel X via (3). This reconstruction is stable
in the sense that the minimiserZ] of (3) is guaranteed to obey

∥∥Z] −X∥∥ ≤ C̃ d2√
m
‖ε‖`2 . (5)

The constants C̃, c, γ > 0 are independent of d.

We note the following:
(i) Eq. (5) shows the protocol’s inherent stability to additive
noise. This stability, combined with the robustness of ran-
domised benchmarking against SPAM errors, results in an es-
timation procedure that is potentially more resource-intensive,
but considerably less susceptible to experimental imperfec-
tions and systematic errors than many other reconstruction
protocols [13, 16, 37].
(ii) The proof can be verbatim adapted to an optimisation of
the `1-norm instead of the `2-norm in Eq. (3), resulting in a
slightly stronger error bound.
(iii) The theorem achieves a quadratic improvement (up to a
log-factor) over the minimal number of AGFs required for a
naive reconstruction via linear inversion for the case of noise-
less measurements. But what is the number of measurements
required to obtain the AGFs and to suppress the effect of the
measurement noise ε in the reconstruction error (5)? For ran-
domised benchmarking setups a fair accounting of all involved
errors is beyond the scope of the current work. But in order to
show that the scaling of the noise term in our reconstruction
error (5) is essentially optimal, we consider the conceptually
simpler measurement setting where the channel’s Choi state
is measured directly. In the Supplemental Material [46] E
we prove upper and lower bounds to the minimum number of
channel uses sufficient for a reconstruction via Algorithm (3)
with reconstruction error (5) bounded by εrec > 0. This num-
ber of channel uses scales as d4/ε2rec up to log-factors. The
upper bound relies on direct fidelity estimation [37]. In order
to establish a lower bound we extend information theoretic
arguments from Ref. [13] to rank-1 measurements.
(iv) Finally, we note that the reconstruction (3) can be practi-
cally calculated using standard convex optimization packages.
A numerical demonstration is shown in Figure 1 and discussed
in more detail in the Supplemental Material [46] H. There we
also show that measuring AGFs with respect to Clifford uni-
taries seems to be comparable to Haar-random measurements,
even in the presence of noise. This confirms an observation
that was already mentioned in Ref. [30].

The proof of Theorem 2 is presented in the Supplemental
Material [46] D. The AGFs can be interpreted as expectation
values of certain observables, which are unit rank projectors
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Figure 1. Reconstruction of a Haar random 3-qubit channel us-
ing the optimization (3): The plots show the dependence of the ob-
served average reconstruction error εrec :=

∥∥Z] −X
∥∥ on the num-

ber of AGFs m for different noise strengths η := ‖ε‖`2 . The error
bars denote the observed standard deviation. The averages are taken
over 100 samples of random i.i.d. measurements and channels (non-
uniform). The Matlab code and data used to create these plots can be
found on GitHub [61].

onto directions that correspond to elements of the Clifford
group. In contrast, most previous work on tomography via
compressed sensing feature observables that have full rank,
e.g. tensor products of Pauli operators. Since we now want to
utilize observables that have unit rank, a different approach is
needed. One approach, developed by a subset of the authors
in [30] is to use strong results from low rank matrix recon-
struction and phase retrieval [24, 56, 62–64]. These methods
[24, 64] require measurements that look sufficiently random
and unstructured, in that their 4th-order moments are close
to those of the uniform Haar measure. The multi-qubit Clif-
ford group, however, does constitute a 3-design, but not a 4-
design. In Ref. [30] this discrepancy is partially remedied
by imposing additional constraints (a “non-spikiness condi-
tion”, see also Ref. [65]) on the unitary channels to be recon-
structed. In turn, their result also required these constraints to
be included in the algorithmic reconstruction which renders
the algorithm impractical [66]. Moreover, important classes
of channels, e.g. Pauli channels, do in general not satisfy this
condition. Here, we overcome these issues by appealing to
recent works that fully characterise the fourth moments of the
Clifford group [41, 42]. In order to apply these results, we
develop an integration formula for fourth moments over the
Clifford group. This formula is analogous to the integration
over the unitary group know as Collins’ calculus with Wein-
garten functions [44]; see the Supplemental Material [46] A.
Equipped with this new representation theoretic technique we
show in the Supplemental Material [46] C that the deviation
of the Clifford group from a unitary 4-design is – in a precise
sense – mild enough for the task at hand.

Our final result addresses the unitarity of a quantum chan-
nel. Introduced by Wallman et al. [8], the unitarity is a mea-
sure for the coherence of a (noise) channel E . It is defined to
be the average purity of the output states of a slightly altered
channel E ′ [67]

u(E) =
∫

dψTr
(
E ′ (|ψ〉〈ψ|)† E ′ (|ψ〉〈ψ|)

)
(6)

that flags the absence of trace-preservation and unitality. The
unitarity can be estimated efficiently by using techniques sim-
ilar to randomised benchmarking [68]. It is also an important
figure of merit when one aims to compare the AGF of a noisy
gate implementation to its diamond distance [39, 40] – a task
that is important for certifying fault tolerance capabilities of
quantum devices.

Although useful, the existing definition of the unitarity (6)
is arguably not very intuitive. Here, we try to (partially)
amend this situation by providing a simple statistical inter-
pretation:

Theorem 3 (Operational interpretation of unitarity). Let
{Uk}Nk=1 be the gate set of a unitary 2-design. Then, for all
hermicity preserving maps X

Var [Favg (Uk,X )] =
u(X )

d2(d+ 1)2
, (7)

where the variance is computed with respect to Uk drawn ran-
domly from the unitary 2-design.

The proof of the theorem is given in the Supplemental Ma-
terial [46] F. Note that the variance is taken with respect to
unitaries drawn from the unitary 2-design and not the vari-
ance of the average fidelity with respect to the input state as
calculated, e.g. in Ref. [69].

In this work we address the crucial task of characterising
quantum channels. We do so by relying on AGFs of the
quantum channel of interest with simple-to-implement Clif-
fords. More specifically, we start by noting that (i) the uni-
tal part of any quantum channel can be written in terms of a
unitary 2-design with expansion coefficients given by AGFs.
As a consequence, for certain Hilbert space dimensions d, the
unital part can be reconstructed from d4 AGFs with Clifford
group operations by a straight-forward and stable expansion
formula. (ii) As the main result, we prove for the case of uni-
tary gates that the reconstruction can be practically done using
only essentially order of d2 random AGFs with Clifford gates.
In a simplified measurement setting, we show that this setting
is provably resource optimal in terms of the number of channel
invocations. For the proof, we derive a formula for the inte-
gration of fourth moments over the Clifford group, which is
similar to Collins’ calculus with Weingarten functions. This
integration formula might also be useful for other purposes.
(iii) We prove that the unitarity of a quantum channel, which
is a measure for the coherence of noise [8], has a simple statis-
tical interpretation: It corresponds to the variance of the AGF
with unitaries sampled from a unitary 2-design.
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The focus of this work is on the reconstruction of quantum
gates. Here, the assumption of unitarity considerably sim-
plifies the representation-theoretic effort for establishing the
fourth moment bounds required for applying strong existing
proof techniques from low rank matrix recovery. These ex-
tend naturally to higher Kraus ranks and we leave this gen-
eralisation to future work. Existing results [70, 71] indicate
that the deviation of the Clifford group from a unitary 4-
design may become more pronounced when the rank of the
states/channels in question increases. This may lead to a non-
optimal rank-scaling of the required number of observations
m. In fact, a straightforward extension of Theorem 2 to the
Kraus rank-r case already yields a recovery guarantee with a
scaling of m ∼ r5d2 log(d).

Practically, it is important to explore how this protocol be-
haves when applied to data obtained from interleaved ran-
domised benchmarking experiments. Such numerical stud-
ies would further allow for a comparison to other established
schemes such as GST, for which no theoretical guarantees ex-
ists. In Ref. [29], the authors show how to use interleaved
randomised benchmarking experiments to measure the AGF
between a known Clifford and the combined process of an un-
known gate concatenated with the average Clifford error pro-
cess. In order to obtain tomographic information about the
isolated unknown gate, the authors had to do a linear inver-
sion of the average Clifford error. However, in most cases, we
expect the average Clifford error to be close to a depolariz-
ing channel which has very high rank. Thus, building on our
intuition obtained for quantum states [72] and using our tech-
niques, we could obtain a low-rank approximation to the com-
bined unknown gate and average Clifford error, which under
the assumption of a high rank Clifford error, would naturally
pick out the coherent part of the unknown gate.
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