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We present a hybrid quantum-classical algorithm for the time evolution of out-of-equilibrium
thermal states. The method depends on classically computing a sparse approximation to the density
matrix, and then time-evolving each matrix element via the quantum computer. For this exploratory
study, we investigate a time-dependent Ising model with five spins on the Rigetti Forest quantum
virtual machine and a one spin system on the Rigetti 8Q-Agave quantum processor.

Whether at the microscopic or the cosmological scale,
a major challenge in physics is understanding the real-
time evolution of nonequilibrium quantum systems. Clas-
sic examples of our limited knowledge in this area are
hadronization of the quark-gluon plasma produced in
heavy-ion collision and the expansion of the early uni-
verse. While in principle these problems are amenable to
numerical approaches on classical computers, the exponen-
tially large state space of quantum systems coupled with
the numerical sign problem in both fermionic systems [1]
and real-time [2] render such calculations intractable.

The promise of quantum computers is that the compu-
tational complexity of such problems can be reduced from
exponential to polynomial. This potential improvement is
two-fold: one can represent the entanglement of quantum
states directly and sign-problem free real-time calcula-
tions are possible. At present, we are restricted to fewer
than 50 non-error-corrected qubits, which greatly restricts
the class of problems we can attempt to simulate. De-
spite these present limitations, calculations in systems of
interest in nuclear physics [3, 4], quantum field theory [5],
condensed matter [6], and quantum chemistry [7, 8] have
been achieved with as few as two qubits. Typically, these
calculations have relied upon hybrid algorithms that cou-
ple a few-qubit quantum computer solving a problem
of exponentially bad classical computational complexity
problem to a larger classical computer.

In this paradigm, we present in this paper the Evolving
Density Matrices On Qubits (EpOQ) algorithm, a hybrid
quantum-classical technique for computing nonequilib-
rium dynamics of many-body quantum systems. In par-
ticular, we show how to compute the density matrix of a
Hamiltonian Hy, with inverse temperature 8, and then
evolve this mixed state in real-time by a different (poten-
tially time-dependent) Hamiltonian H;. The algorithm
proceeds by computing on a classical computer a stochas-
tic approximation to the density matrix p = e=#Ho via
Density Matrix Quantum Monte Carlo [9]. This approx-
imate density matrix is passed to a quantum computer
element-by-element, which performs time-evolution with a
different Hamiltonian H7, and then computes observables
with the time-evolved density matrix p(t) = e~ 1t peithit,
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Past theoretical work on computing thermal physics
with a quantum computer has focused on performing the
thermal-state preparation on the quantum processor [10,
11]. EpOQ differs from these approaches in allowing
the computation of the thermal state to remain on the
classical computer, using the quantum processor only
for the classically intractable time-evolution. With this
division, the problem of evolving a mixed state on a
quantum computer is reduced to the problem of evolving
multiple pure states.

In this work, we implement our algorithm for a 1D Ising
chain with N < 5 sites. The real-time evolution of this
system has a long history of study on classical computers,
starting with [12]. Since then, it has been used as a
benchmark for developing time-dependent methods in
quantum systems [13-16].

Below we describe the hybrid quantum-classical algo-
rithm EpOQ in full detail. Results using the Rigetti For-
est, a quantum virtual machine (QVM) [17], and Rigetti’s
8-qubit quantum processor (QPU) 8Q-Agave, are pre-
sented.

The first step of EpOQ produces a stochastic, sparse
approximation to the density matrix using the Density
Matrix Quantum Monte Carlo algorithm (DMQMC) [9],
which we briefly summarize here. DMQMC is closely
related to Diffusion Monte Carlo methods [18], in which a
population of imaginary particles called ‘psips’ in Ref [18].
explore the configuration space of a system through ran-
dom walks in imaginary time § = it. Each psip is asso-
ciated to a position basis state, and in the limit of large
[, the density of psips approximates the ground state
wavefunction. In DMQMC, the psips explore the space of
basis operators, and after evolution by a finite 5, the den-
sity of psips approximates the density matrix at inverse
temperature (.

The density matrix p(3) = e ## may be defined as the
solution to the symmetric Bloch equation

d 1

£ =~ (Hp+ pH) (1)
with the initial condition p(0) = 1. The symmetric formu-
lation of the Bloch equation results in an algorithm that
naturally preserves the hermiticity of p, up to stochas-
tic fluctuations. DMQMC stochastically implements the
first-order Euler difference approximation to Eq. (1), with
the density matrix represented by the collection of psips.
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To each psip is associated a basis operator |b,) (a,| and a
sign xp, determining the sign of the psip’s contribution
to the density matrix. The approximate density matrix
p ~ p is given by a sum over all psips: the contribution
to the density matrix of each psip p is xp |bp) (ap|- Thus,
p is given by

p= ZXp |bp) (ap| - (2)

To simplify the communication between the quantum and
classical parts of the algorithm, we choose the computa-
tional bases of the classical and quantum computers to
be the same.

The evolution of Eq. (1) begins by randomly placing
psips along the diagonal of the density matrix, all with
positive sign xy = 1. This implements the desired initial
condition for Eq. (1). The density matrix is then evolved
in discrete steps of AS, with 8/Af steps taken. At each
step, every psip p (which is associated with the |b,) (a,|
term of p) performs four operations derived by considering
a finite-time-step approximation to Eq. (1):

1. The psip may spawn a new psip on another site
in the same column, |¢) (a,| where ¢ # b,, with
probability 1 [{c| H |b,)| AB.

2. Similarly, the psip may spawn a new psip onto
another site in the same row, |b,) (c| where ¢ # a,,
with probability 1 [(a,| H |¢)| AB.

3. If (ap| H|ap) + (bp| H|bp) > 0, then the psip
is removed from the simulation with probability
% |<ap| H |ap> + <bp| H |bp>| Ap.

4. Alternatively, when (a,| H |a,) + (by| H |b,) < 0,
the psip is cloned, producing another psip on
the same site.  This occurs with probability

2 apl H lap) + (by| H [bp)| AB.

When the 8/Ap executions of these four steps have
completed, the resulting collection of psips gives an ap-
proximation to p(8) via Eq. (2). The efficiency of this
algorithm is produced by the fact that p may be very
sparse, where the exact density matrix p is not. For
an N-site system, the density matrix p has at least 2V
non-zero entries, and typically of order 22V; we expect
sufficiently accurate expectation values to be obtainable
with a population of psips which scales only polynomially
with N. For a fixed NV, expectation values computed with
p will converge to the exact answer as P — oo like 1/v/P,
where P is the number of psips used. We observed the
convergence to the exact p for several different N.

With the approximate density matrix p determined,
time-dependent expectation values are evaluated on a
quantum processor. A time-dependent expectation value
is given by

Ty Oe—zHltpezHlt

) ™

; 3)

where H1, the Hamiltonian used for time evolution, is dis-
tinct from the Hy Hamiltonian used to define the density
matrix. Substituting the hermitized approximate density
matrix p — % (ﬁ + ﬁT), we see that the expectation value
may be approximated by a sum over psips:

> (;c%—““ [xp 1by) {apl + X lay) (5 ] H)
p (4)

From Eq. 4 it can be seen that the decomposition of the
density matrix into psips allows one to time-evolve each
psip independently as a pure state, avoiding the difficulty
of constructing a mixed state on a quantum processor.

Psips for which a, = b, are termed ‘diagonal’. Expec-
tation values (a,| O(t) |ap) of diagonal psips may be eval-
uated straightforwardly on a quantum computer because
they can be represented easily as a pure state. In contrast,
non-diagonal psips must be diagonalized before evaluation
on a quantum processor. For real charges x;, a hermi-
tized psip is diagonal in the basis |u,) = %Haﬁ + |bp)];
lvp) = %Ha,ﬁ — |bp)]. Such states are easily prepared on
a quantum computer — we use a single ancillary qubit
that is discarded after state preparation. Working in this
basis (a different basis for each psip), the contribution to
(O(t)) of the non-diagonal psips becomes

1
Trp

Z [<up| et Qe lup) — (vp| et Qe |Up>] .

’ (5)

In this form, the expectation value is a sum of quantities
each amenable to computation with a quantum computer.
For a given set of psips specifying p, a separate instance
of a general program is run on the quantum processor for
each psip. Each program contains the same code for time-
evolution and measurement, but a different sequence of
operations for preparing the pure states. For non-diagonal
psips, two programs must be executed, one for |u,) and
one for |v,), while the diagonal psips require only one.
Each program has the following steps:

(O) ~ m=x

1. Prepare the state |u,) (or |vp));

2. Time-evolve with H; for a fixed time ¢ via trotteri-
zation;

3. Measure O, and any other observables of interest
simultaneously.

For nearly all Hamiltonians of physical interest, the
diagonal basis of the Hamiltonian is not efficiently ac-
cessible, and the time-evolution operator e*1* must be
approximated by trotterization. This is accomplished



by decomposing the Hamiltonian into terms easily diag-
onalized: H; = H, + H,. The time-evolution operator
is then it = (einAteinAt)t/(At) + O(At). In the
case of Eq. (6), we trotterize with H, = —j. >, ol and
H,=-J, Z<ij> UEZ)UEJ) — ), ng).

In this paper, the observable of interest (transverse
magnetization) may be measured by changing basis from
the Z— to the X —basis (a rotation of each qubit), and
measuring all qubits simultaneously.

We will use the z basis as our computational basis. For a
diagonal psip, the state |a,) is prepared by beginning with
|00 --), and performing a NOT gate on qubit ¢ if the spin
at site ¢ is down in the z basis. For a non-diagonal psip,
we introduce an ancillary qubit to be placed in the state
|0)+€%% |1) (if preparing |u,)) or |0) —e®> |1) (if preparing
|v,). This is done by initializing the ancillary to |0, and
applying a Hadamard gate followed by a phase rotation of
either 6, or 8, +m. With the ancillary qubit prepared, the
ith qubit is flipped with a CNOT gate, conditional on the
ancillary. Finally, the ancillary is disentangled from the
rest of the system via further CNOT gates and discarded.

Once each psip has been evaluated by the quantum pro-
cessor, the results are summed together (on the classical
computer) via Eq. (5) to calculate the expectation value
of the thermal state.

In additional to the classical polynomial scaling of this
algorithm, each psip corresponds to one or two calcula-
tions on the quantum computer. Thus, the number of cal-
culations required on the quantum computer is expected
to be polynomial in NV as well. Due to trotterization, each
calculation on the quantum computer requires O(T/At)
gates, with a constant of proportionality dependent on
the Hamiltonian being simulated.

As a demonstration of the algorithm, we simulate a
1D time-dependent Ising spin chain with one coupling
constant and two independent magnetic fields [12-16].
The general Hamiltonian for this class of system is

H(t) = =J(t) Y oo —pa(t) Yy ol —pe(t) D ol
(i) i i
(6)

where J,(t) is the coupling constant between the z—axis
aligned spin component of nearest neighbors, and . ()
and p.(t) denote time-dependent magnetic fields aligned
with the x— and z—axes, respectively. We take the spin
chain to have periodic boundary conditions. In this paper,
we will work in units where the inverse temperature is
B8 = 1, and restrict ourselves to a constant coupling
J.(t) = 1 and longitudinal magnetic field g (¢) which is 0
for the N = 5 system and 1 for the NV = 1. The transverse
magnetic field is permitted to be time-dependent.

The time-dependent observable we measure is the aver-
age transverse magnetization, given by

ma(0) = 5 S o(0). @

As discussed in the previous section, this quantity is easily
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FIG. 1. The transverse magnetization (m,(t)) fora N =5
site spin chain with coupling J. = 1, and an initial p5(0) =1
and 8 = 1, which is evolved with pg(t > 0) = —1. Results
from the Forest QVM are shown by red circles and the exact
result is denoted by the solid black line.

measured on the quantum processor.

For the purposes of this exploratory study, we compute
(mg(t)) for two cases: the N = 5 spin chain on the Rigetti
Forest QVM to empirically test the algorithm’s correct-
ness, and the single-spin case on the Rigetti 8Q-Agave
quantum computer to study the sources of uncertainty
arising in a physical quantum processor.

Without the additional sources of error inherent in a
QPU, we are able to access larger systems on the QVM.
We evolve the N = 5 spin system with the Hamiltonian
described by Eq. (6) with p,(t =0) =1 and p,(t > 0) =
—1. The longitudinal magnetic field is g, = 0. For this
calculation we use a trotterization time step of At = 0.1.
The imaginary time step was AS = 0.04 for evolving the
psips with 5000 initial psips. Shown in Fig. 1 is (m,(t)),
in statistical agreement with the exact result.

When run on an ideal quantum processor, as simulated
by Rigetti Forest, EpOQ has two sources of uncertainty,
both statistical: the approximation of p by a finite num-
ber of psips, and the intrinsic measurement noise on the
quantum processor. These sources of error are easily ac-
counted for with standard methods such as bootstrapping
as we do in this work. Note, though, that the errors
are correlated since the same set of psips (i.e., the same
approximation to the density matrix) is used for all values
of t.

We use the 8-qubit quantum processor 8Q-Agave to
simulate a single spin, thermalized in a transverse mag-
netic field p.(t = 0) = 1, and time-evolved in a flipped
magnetic field p,(t = 0) = —1. The longitudinal mag-
netic field is taken to be constant: pu, = 1. For this
calculation we use a trotterization time step of At = 0.2.
The imaginary time step was AS = 0.04, with 1000 initial
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FIG. 2. The rescaled (see text) transverse magnetization
(mx(t))/(mz(0)) for a single spin, with initial p»(0) = p.(0) =
1 and 8 = 1.0, which is evolved with p,(t > 0) = —1. The
results from Rigetti’s 8Q-Agave QPU are shown in red circles
while the exact result is denoted by the solid black line.

psips. The results of this execution of the algorithm are
presented in Fig. 2, again in good agreement with the
exact result.

The physical 8Q-Agave, unlike the simulated Forest,
is not an ideal quantum processor, and has several addi-
tional sources of error that must be accounted for. Most
prominently, measurements have so-called readout noise.
When measuring a qubit, there is some probability that
the opposite state will be read instead. If one assumes
this readout noise is symmetric between the two states
and independent of the gates used before a measurement
is taken (empirically the case at our level of precision),
this reduces the measured magnitude of (m,(t)) by a
constant factor, which can be corrected for by rescaling.
In Fig. 2, we rescale (m,(t)) by (m(0)), which appears to
sufficiently remove the effect of readout noise.

Other sources of error, more difficult to correct for, are
also present. For instance, when a parameterized gate

4

(such as a 1-qubit phase gate) is requested with angle
0, the actual gate implemented may have angle 6 + €(6),
producing a systematic bias in all results using that value
of 6. This and other unanticipated sources of systematic
error may be accounted for by performing a calibration
run with a simpler Hamiltonian (diagonal in the compu-
tational basis). For this work we use H| = —p.0,: the
error bars estimated for Fig. 2 are the quadrature average
of the difference between the simulated results for H{ and
the exact answer.

In this work, we have presented EpOQ a hybrid classi-
cal/quantum algorithm for simulating out-of-equilibrium
dynamics of thermal quantum systems, applying it to a
simple system on both a quantum virtual machine and
a quantum processor. EpOQ first computes an approx-
imation of the density matrix on a classical computer,
evading the need to compute thermal physics or prepare a
mixed state on a quantum computer. The density matrix
is then passed to a quantum processor to compute the
time-evolution, thus avoiding the sign problem associated
with real-time calculations on a classical computer.

Going forward, this algorithm could be applied to prob-
lems of greater physical interest. While the hadronization
of the quark-gluon plasma or reheating in the early uni-
verse will require larger quantum processors than exist at
present, any thermal quantum system for which a single
pure state can be evolved on a quantum computer is ac-
cessible at no additional quantum computing complexity.
The non-linear response of low-dimensional systems like
spin chains and graphene as well as the response of small
nuclei to neutrino scattering [3, 4] should be possible
on near-future resources. In order to do this, a better
characterization of the errors present on today’s physical
quantum computers will be necessary — a general concern
for all quantum algorithms.
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