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Hydrogels made from structured polyprotein domains combine the properties of cross-linked 
polymers with the unfolding phase transition. The use of protein hydrogels as an ensemble approach 
to study the physics of domain unfolding is limited by the lack of scaling tools and by the complexity 
of the system. Here we propose a model to describe the biomechanical response of protein hydrogels 
based on the unfolding and extension of protein domains under force. Our model takes into account 
the contributions on the network dynamics of the molecules inside the gels, which have random 
cross-linking points and random topology. This model reproduces reported macroscopic visco-
elastic effects and constitutes an important step toward using rheometry on protein hydrogels to 
scale down to the average mechanical response of protein molecules.    

    

 

 
Protein-based hydrogels are a new type of material that 

retain the main characteristics of polymeric hydrogels, but 
show a unique visco-elastic response to stress. This response 
stems from the unfolding and extension of constituent 
protein domains. The appearance of the unfolding phase 
transition depends on the experienced force, exposure time, 
pulling geometry, the nature of the protein used to form the 
gel. Such a unique response of protein-based hydrogels to 
external stimuli does not only open new vistas toward 
designing new biological materials, but also enables a new 
spectroscopy technique to determine the mechanical 
response and energy landscape of single proteins from multi-
molecule ensemble experiments of protein hydrogels. Rather 
than gathering single-molecule data through time-
consuming atomic force microscopy (AFM) or optical and 
magnetic tweezers measurements, soft-matter rheometry can 
probe the force response of a massive number of 
interconnected proteins [1,2]. Rheometry techniques require 
the decoupling the force-induced (un)folding of individual 
proteins from the elastic response related to the cross-linked 
gel network, an experiment that recently became available 
through the introduction of force-clamp rheometry [3]. 

Here we propose a model that describes the macroscopic 
response of protein-based hydrogels obtained from 
polyproteins. This model is a critical step toward extracting 
the average unfolding and extension of single molecules 
from hydrogel stretching experiments.   

Polyproteins have a cylindrical geometry and can be 
cross-linked into hydrogels using a photo-activated chemical 
reaction, where exposed tyrosine amino acids produce 
carbon-carbon bonds between adjacent polyprotein 
molecules [1]. Once the protein network is formed, its 
response to force can be analyzed through the dynamics of 
its cross-linking nodes. An elegant approach was introduced 
to model the network dynamics of actin filaments under a 
perturbing force vector [4-6]. While actin domains do not 

experience any unfolding or refolding transitions, the 
cylinder like geometry of actin filaments resembles that of 
polyproteins. 

Unique to polyprotein hydrogels is the unfolding 
transition of constituent domains, which results in a 
significant increase in the contour length of the molecule. 
We chose to investigate hydrogels made from polyproteins 
(repeats of protein L), as this model protein has been 
extensively studied experimentally by the single molecule 
force spectroscopy community [2,7]. The domains in 
polyproteins are arranged as ‘beads on a string’. This 
arrangement is an important characteristic of many proteins 
that have evolved to operate under force, such as titin in 
muscles [8] and talin in cellular mechano-transduction 
[9,10]. Furthermore, an energy landscape model for a 
polyprotein made of eight repeats of protein L was shown to 
reproduce the measured unfolding and refolding response of 
this protein to force, and was adopted herein [11,12]. This 
model combines the change in the barrier height between the 
folded and unfolded states due to an applied force with 

 
FIG. 1 (color online) Mechanical response of polyproteins. (A) 
Projection of the free energy landscape on the pulling coordinate at 
various forces for a polyprotein L with 8-repeats, showing an 
accordion-like shape. Dotted lines follow local energy minima. (B). 
Single molecule unfolding traces generated with the landscape from 
(A). Inset: Schematics of an eight-domain polyprotein under force.   



 

 

 
FIG. 2 (color online) Protein hydrogels under force. (A) 
Molecules are depicted as straight lines with 8 spheres along their 
axis, representing folded domains. A global constant force is 
applied to the z-axis. (B) Illustration of the unfolding dynamics and 
orientation change during gel stretching. (C) Snap-shots of the same 
gel at three different time points. Scale bars are 20x20x20 nm.  

standard polymer elasticity models, which account for the 
entropic extension of the unfolded polypeptide chain (Fig. 
1). For a single domain, a step up is seen during its unfolding 
and extension, while a step down is measured during its 
refolding and recoil. The energy landscape parameters were 
chosen to match the unfolding and refolding dynamics of 
protein L, which were measured experimentally with single 
molecule magnetic tweezers [13] (Table S1). Therefore, this 
landscape intrinsically accounts for interactions between the 
protein molecules and their surrounding solvent molecules. 

As hydrogels are over 90% water rheometry[3], it is 
reasonable to assume that the dynamics of individual 
molecules inside hydrogels is the same as the dynamics of 
the polyprotein measured by force spectroscopy in solution. 
Our model ignores any intermediate states that characterize 
the folding process, as these are short-lived [14] when 
compared to the chosen sampling time. Furthermore, as most 
of the domains composing a molecule will not be part of the 
cross-link, it is safe to assume that they will experience the 
force along the polyprotein N-to-C backbone, which is the 
same pulling coordinate as in single molecule experiments. 
Those domains that are part of the cross-links will have a 
different stability [15], but their overall effect on the gel 
dynamics is limited, as they only partially extend between  
the  cross-link  
and either the N or C-terminus (see also below equation (4)). 

In our model, each polyprotein L molecule is 
approximated to a rigid rod, with 𝑚 = 8 domains of radius 
𝑟 = 2	𝑛𝑚 each (PDB code 1hz5), leading to a total contour 
length	𝐿 = 32	𝑛𝑚. This rigid rod structure was described 
experimentally as a characteristic of folded polyproteins 
using both electron microscopy [16] and small-angle X-ray 
scattering [17]. To form the gel network, each polyprotein 
molecule was assigned a center of mass, following a random 
distribution inside a square lattice, along with a random 
orientation. 𝑁 polyprotein molecules were distributed within 

a volume 𝑉 = 𝑁/𝑐, where 𝑐 is the molecule number density. 
The proteins were allowed to diffuse inside a rigid box of a 
volume 3𝑉 with a mean square displacement 〈𝑥0〉 = 2𝐷3δ𝑡 
and to rotate with 〈𝜑0〉 = 2𝐷7δ𝑡, while interacting 
elastically with the box walls [18,19]. The translation and 
rotation diffusion coefficients for a single polyprotein 
molecule are defined as: 

  𝐷3 = 89:;(=>(?)AB)
CDEF

G = 3680	nm0µsNO            (1) 

 𝐷7 = 8C9:;(PQ(?)AR)
DEFS

G = 20.1	µsNO                (2) 

with 𝑝 = 𝐿/(2𝑟) being the shape factor for a rod, and α and 
β end-effect terms which account for hydrodynamic 
iterations expressed as second degree polynomials in 
polynomials in 𝑝NO [18,19]. Crosslinking occurs if the center 
of mass of adjacent protein domains are within a threshold 
distance ||𝒖YY⃗ 𝒊 − 𝒖YY⃗ 𝒋|| ≤ 2𝑟, where	𝒖YY⃗ 𝒊 points to node 𝑖 of the 
network.  

When cross-linked, clusters of two or more molecules 
move in tandem with a diffusion coefficient of 𝐷3`Pab3c7 =
9:;
dDEef

, where 𝑅h is the radius of gyration [20]. Our approach 

simulates a popular cross-linking method, which produces 
C-C bonds at the tyrosine sites [1]. As protein L has three 
tyrosine amino acids, up to three cross-links per domain were 
allowed. Following complete cross-linking, the network was 
allowed to equilibrate using a quasi-Newton algorithm that 
shifts the position of cross-linking nodes to minimize 

 𝐻j7kbbPlQ9 = 𝐾∑ (2𝑟 − o𝒖YY⃗ lp,rpo)0slp,rpt  (3)  

The primed indices restrict the summation to all valid 
inter-protein (i.e. cross-linked) node indices, with 𝐾 =
3.72 ∙ 10w	pN/nm being the force constant associated with 
the quadratic approximation of a Cn-Cn bond [21], and o𝒖YY⃗ l,ro  
the perturbed bond length, such that 𝒖YY⃗ 𝒊,𝒋 = 𝒖YY⃗ r − 𝒖YY⃗ l. 

Under a constant force 𝑭YY⃗  applied to the entire gel, the force 
experienced by a single molecule 𝓀 is calculated based on 
its orientation of the molecule |𝐹𝓀| = 𝑭YY⃗ ∙ 𝒖}𝓀, with 𝒖YY⃗ 𝓀 =
∑ 𝒖YY⃗ lp,lpAOlp  being determined by the nodes along molecule 𝓀 
(Fig. 2A). 𝐹𝓀 determines the energy landscape on which each 
protein molecule diffuses at every moment, as the gel 
stretches (Fig. 1A). Force can lead to unfolding and 
extension of protein domains along polyprotein molecules 
(Fig. 1B). An unfolding or refolding event of a domain 𝑗 on 
polyprotein molecule 𝓀 extends/contracts the total end-to-
end length 𝑥𝓀 by an amount Δ along 𝒖}𝓀.  

𝓵Y⃗ l𝓀
(aQ)�kP�lQh
�⎯⎯⎯⎯⎯⎯⎯�

⎩
⎨

⎧𝓵Y⃗ l
𝓀 ± 𝒖}𝓀 Δ 2� ; 	𝑖 > 𝑗

𝓵Y⃗ l𝓀	; 𝑖 = 𝑗
𝓵Y⃗ l𝓀 ∓ 𝒖}𝓀 Δ 2� ; 	𝑖 < 𝑗

             (4) 

Where ‘+’ signifies an unfolding event and ‘–’ a refolding 
transition. To understand how the (un)folding of single 



 

 

domains perturb the entire gel network, we adopt a 
formalism used to describe actin gels [6], which minimizes 
 the stretching and bending terms: 

 𝐻�37c`� =
�
0
∑ (𝒖YY⃗ 𝒊,𝒋∙𝒓Y⃗ 𝒊,𝒋)𝟐

|𝒓Y⃗ 𝒊,𝒋|Ssl,rt          (5)  

𝐻�cQ� =
�
0
∑ [(𝒖YY⃗ 𝒋,𝒌N𝒖YY⃗ 𝒊,𝒋)×𝒓Y⃗ 𝒊,𝒋]𝟐

|𝒓Y⃗ 𝒊,𝒋|�sl,r,9t        (6) 

where 𝒖YY⃗ 𝒊 and 𝒓Y⃗ 𝒊 point to nodes in the perturbed and stable 
configurations respectively. The coefficients 𝜅 and 𝜇 are 
proportional to the persistence length ℓ?, and related to the 
geometry of the network constituents [22]. For a rigid 
uniform rod-like polyprotein, 𝜅 = ℓ?𝑘�𝑇 = 2.4	pN ∙ nm0 
and 𝜇 = ¡ℓ¢9:;

D7£
= 0.2	pN, where ℓ? = 0.58	nm for protein 

L [2]. Each network node is shifted during network 
optimization to minimize the total energy 𝐻;k3¥P =
𝐻j7kbbPlQ9 + 𝐻�cQ� + 𝐻�37c`� (Fig. 2B). This network 
optimization step was carried out only following unfolding 
or refolding events, as only then there is a significant change 
in the end-to-end length of a molecule inside the gel. 
Following each optimization step, the force	𝐹𝓀 is 
recalculated to the closest integer, as determined by 𝒖}𝓀, and 
each molecule is transitioned to the corresponding energy 
landscape 𝑈𝓀 (Fig. 1A). The total gel extension was 
estimated by projecting all the molecules on the stretching 
coordinate 𝑧, and fitting a higher-order Gaussian 
function[23]:		𝐹ª(𝑧, 𝑡) = 𝐴 exp[−(𝑧/𝛾)0ª], where 2𝛾 
represents the gel length (Fig. 2C).  

Under constant force, polyproteins show probabilistic 
unfolding events in single molecule experiments, resulting in 
a stair-case like extension, rather than one large step at a 

well-defined time [2]. As more proteins participate in the 
overall mechanical response, this probabilistic response is 
expected to be smeared out. Indeed, when increasing the 
number of molecules that are used to form the hydrogel 
network, we observe a decrease in the variance between 
individual extension traces and the average for a given force 
protocol (Fig. 3). In this case, five separately polymerized 
hydrogels composed of N = 1, 8, 18, 32, 40, 50, 60, and 72 
proteins at a concentration 𝑐 = 9.0	 ∙ 10N¡	molecules/
nmC	(~1.5 mM) were exposed to a constant applied force of 
F = 50 pN for 5 seconds. The residual of the extension 
between the average and individual traces decreases with an 
increasing number of molecules, and stabilizes to ~4% for N 
≥ 50. These results agree with the correspondence principle 
and tend toward the strictly deterministic behavior observed 
in tissues and biomaterials [24]. Indeed, rheometry 
measurements of protein hydrogels show very little change 
between measured elastic responses under identical 
conditions [3]. 

To investigate the extension of hydrogels to mechanical 
forces using our model, we simulated networks made of N = 
50 molecules at a concentration 𝑐 = 9.0	 ∙ 10N¡	molecules/
nmC, which we find optimal in terms of probabilistic 
hydrogel response and computation time. Our simulations 
reproduce the measured behavior of protein hydrogels at 
constant force, which showed an initial elastic response, 
followed by a slower visco-elastic regime (Fig. 4A) [3]. As 
previously reported [25], a single exponential law describes 
poorly the visco-elastic regime. The macroscopic parameters 
of complex visco-elastic materials with multiple 
mechanisms underlying their force response can be obtained 
using the Maxwell–Wiechert model [26]: a parallel 
assemblage of separately parameterized springs and dashpot 

 
 FIG. 3 Scaling behavior of protein hydrogel extension at constant force. Hydrogels composed of varying number of proteins (from 
N = 1 to N = 72) at a concentration of 𝑐 = 9.0	 ∙ 10N¡	molecules/nmCare subjected to an applied force of 50 pN for 5 seconds. Five 
normalized traces from separately polymerized hydrogels are simulated for each hydrogel size (grey traces) and averaged (black traces). 
The residuals, R, between the average trace and the individual traces are shown below each graph. N = 50 is the minimum number of 
molecules needed to produce a deterministic behavior. 

 



 

 

Maxwell elements 𝑥(𝑡) = 𝑎¶ + ∑ 𝑎l𝑒N¸¹3l  , where 𝜏l is the 
corresponding rate. 
Here, we also find that a two-term exponential model (i = 2) 
is sufficient to capture the hydrogel response (Fig. S4 and 
Table S2). Now we also have a clearer picture of what each 
exponential represents. The fast rate constant is dominated 
by the initial alignment of molecules to the applied force and 
the unfolding events taking place in molecules already 
aligned to the direction of the force vector (triangles in Fig. 
4B). The slow rate constant, on the other hand, are dominated 
by individual protein unfolding events as network 
rearrangements take place less often (squares in Fig. 4B). 
  

 
FIG. 4. (color online) Force dependent behavior of protein-based 
hydrogels. (A) Average of 15 different hydrogels traces of N = 50 
molecules at a concentration of 𝑐 = 9.0	 ∙ 10N¡	molecules/nmC, 
subjected to a constant force of 30, 40, 50, and 60 pN. (B) 
Comparison between rate constants of single molecule unfolding 
(circles) and rate constants from gels, determined by two-term 
exponential fits from (A), plotted as a function of the applied force. 
By correlating simulated and measured rates of protein hydrogels, 
one can determine the underlying average single molecule kinetics. 

 
Protein hydrogels allow to sample several billion 

molecules in one pull, providing a simple experimental 
approach to measure the mechanical response of proteins. 
We anticipate that protein hydrogel experiments will enable 
the screening for bioactive compounds by studying the same 
biomolecules in different solution conditions, with 
tremendous speed and accuracy. While macroscopic 
engineering models developed to study the elongation of 
materials, such as steel, are currently being applied for 
hydrogels [27-29], proteins do not behave as simple 
Hookean springs [11]. Other fractal-based scaling 
approaches have been used, but they also do not account for 
the randomness of the cross-linking and of the molecular 
orientation, which are specific for the gelation process 
[30,31]. Our model provides the first theoretical framework 
to obtain the corresponding average mechanical (un)folding 
behavior of a single polyprotein, that would otherwise be 
determined from much more tedious single molecule 
experiments. To predict the mechanical response of single 
molecules, one would need to use this model to build a 
library of traces obtained with different unfolding and 
refolding barriers and correlate the experimentally measured 
gel dynamics with the rates obtained from simulations (Fig. 

4 B).  
Here we assume that the volume of the hydrogel is the 

same as the volume of the protein solution, before cross-
linking, as it was recently reported experimentally for 
protein L in this concentration range [32]. But solvation 
forces can play a significant role, especially when moving a 
gel from a poor to a good solvent [33]. For some protein 
hydrogels, a change in gel volume was measured following 
the cross-linking reaction [34,35], which was estimated to a 
few pN per molecule [31]. Such changes in volume can be 
readily incorporated in this model, as they represent a 
simplified case, where the forces experienced by the proteins 
do not have a predefined directionality (|𝐹𝓀| = constant, 
Figure S5). However, this approach cannot currently account 
for aggregation effects, which can be avoided experimentally 
by working with sufficiently diluted protein solutions [3].     

In summary, we propose a model to describe the 
mechanical properties of protein-based hydrogels. This 
model builds on an established approach which describes the 
unfolding response of polyproteins to a force along their end-
to-end coordinate [11,12]. Our model assumes no breaking 
of covalent bonds and utilizes the constraint imposed by 
domain cross-linking to optimize the network dynamics. The 
network equilibrates at the cross-linking points, following 
unfolding/refolding events. As the number of molecules 
forming a gel is increased, this model successfully recovers 
the probabilistic to deterministic scaling behavior expected 
in aggregating the stochastic process of polyprotein 
(un)folding. Using the minimum number of molecules where 
the gel shows deterministic behavior (N = 50), we have 
investigated the force-dependency protein-based hydrogels 
to better understand the contributions from individual 
protein (un)folding events and the deformation mechanics of 
the crosslinked hydrogel network. Extension traces fit the 
multi-term exponential behavior commonly attributed to 
viscoelastic materials [26]. Our model can now explain from 
a molecular perspective the mechanical response of protein 
hydrogels from the unfolding and extension of constituent 
protein domains.  The relative ease of applying the presented 
formalism to hydrogels of generic protein composition 
furnishes an exciting new approach to probe the nanoscale 
behavior of proteins and offers a new way to extract 
unfolding and refolding dynamics from hydrogel rheometry 
measurements.  
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