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It has been recognized that the condensation of spin-triplet Cooper pairs requires not only the
broken gauge symmetry but also the spin ordering as well. One consequence of this is the possibility
of the Cooper-pair spin current analogous to the magnon spin current in magnetic insulators, the
analogy also extending to the existence of the Gilbert damping of the collective spin-triplet dynamics.
The recently fabricated heterostructure of the thin film of the itinerant ferromagnet SrRuO3 on
the bulk Sr2RuO4, the best-known candidate material for the spin-triplet superconductor, offers a
promising platform for generating such spin current. We will show how such heterostructure allows
us to not only realize the long-range spin valve but also electrically drive the collective spin mode
of the spin-triplet order parameter. Our proposal represents both a novel experimental realization
of superfluid spin transport and a transport signature of the spin-triplet superconductivity therein.
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FIG. 1. Schematic illustration of the analogy between the
magnetic insulator and the spin-triplet superconductor. (a)
The planar spiraling of the magnetic order parameter n̂ leads
to spin current. (b) The same phenomena occurs for that of

the spin component d̂ of the spin-triplet superconductor order
parameter, (c) the dual picture of which is the counterflow of
the spin up-up and down-down Cooper pairs.

Introduction: Harnessing spin rather than charge in
electronic devices has been a major topic in solid state
physics; it has been not only utilized for various mem-
ory devices but is also expected to play a key role in
processing quantum information [1]. In order for vari-
ous spin devices to function robustly, the long-range spin
transport needs to be achieved. Metallic wires, however,
typically do not transport spins beyond the spin-diffusion
length due to the single electron spin relaxation [2].

In recent years, it has been shown that the exponential
damping can be circumvented in the spin transport via
collective magnetic excitations. For example, easy-plane
(ferro- and antiferro-)magnetic insulators are analogous
to the conventional superfluid in being characterized by
the U(1) order parameter[3–5]. As Fig. 1 (a) illustrates,
the planar spiraling of the order parameter in such mag-
netic insulators gives rise to the spin supercurrent, just
as the phase gradient of the conventional superfluid gives
rise to the mass supercurrent; in this sense these magnetic
insulators can be regarded as spin superfluids [6].

Interestingly, there exists a class of superfluids and su-
perconductors which can support both mass and spin su-
percurrent. Such superfluids and superconductors should
break both spin rotational symmetry and gauge symme-

try. Examples include the spin-1 boson condensate [7],
the 3He superfluid [8, 9], and the spin-triplet supercon-
ductor [10, 11]; in the two latter cases, the dissipationless
spin current would be carried by the Cooper pairs. While
the vortices with spin supercurrent circulation have been
observed in all theses systems [12, 13], the bulk spin su-
percurrent has not been detected in the superconductor.
In this Letter, we will show how the spin superfluid-

ity in the spin-triplet superconductor leads not only to
the long-range spin current but also electrical excitation
of the spin wave in the bulk. For realizing these phe-
nomena, we propose a two-terminal setup with voltage
bias between ferromagnetic metal leads in contact with
the spin-triplet superconductor. While the static order-
parameter case [14] essentially reduces to the Blonder-
Tinkham-Klapwijk type formalism [15] for the interfacial
transport, here we complement it with the appropriate
equations of motion for the collective spin dynamics in
the superconductor. Recently, a thin film of the itiner-
ant ferromagnet SrRuO3 has been epitaxially deposited
on the bulk Sr2RuO4, the best known candidate material
for the spin-triplet superconductor [16], yielding, due to
their structural compatibility, an atomically smooth and
highly conductive interface [17] with a strong Andreev
conductance [18]. This makes Sr2RuO4 and SrRuO3 the
primary candidate materials for the bulk and the leads,
respectively, of our setup [19]. For the remainder of this
paper, we will first show how the simplest effective spin
Hamiltonian for the spin-triplet superconductor and the
resulting spin dynamics are analogous to those of the an-
tiferromagnetic insulator; then, we will discuss the mag-
netoresistance for the DC bias voltage and the coupling
between the AC bias voltage and the spin wave.
General considerations: We first point out the close

analogy between the spin order parameter of the antifer-
romagnet and the spin-triplet superconductor. Defined

i(d · σ)σy=

[

−dx + idy dz
dz dx + idy

]

≡

[

∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

]

(1)
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[20], the d-vector of the spin-triplet pairing, whose di-
rection d̂ parametrizes the Cooper-pair spin state, be-
haves similarly under spin rotations to the Néel order
parameter of an antiferromagnet, i.e., [Si(r), dj(r

′)] =
ih̄ǫijkδ(r − r

′)dk(r) and [di, dj ] = 0 for the condensate
spin S (unlike the magnetization, neither the Néel order
parameter nor the d-vector generate the spin rotation in
themselves) [8, 9, 11]. Given that, in both cases, S× d̂ is
the conjugate momentum to d by the commutation rela-
tions, it is natural that the simplest effective Hamiltonian
for the spin-triplet superconductor d̂-vector,

H =
1

2

∫

dr[A(∇d̂)2 +Kd̂2z + γ2
eS

2/χ], (2)

where γe is the electron gyromagnetic ratio, A the d̂-
vector stiffness, and χ the magnetic susceptibility, should
be equivalent to that of the antiferromagnet Néel or-
der parameter, once we identify the d̂-vector with the
Néel order parameter [4]. This Hamiltonian, which can
be constructed from the phenomenological approach of
Ref. [21], applies to the electron pairing respecting the
spin-rotational symmetry. Assuming a rigid k-space con-
figuration of d̂ at low energy, the low-energy manifold
of the theory is parametrized by d̂(r), associated with
smooth spatial variations of the triplet order. An easy-
plane anisotropy K for planar spin dynamics can be in-
duced perpendicular to an applied magnetic field, analo-
gously to the spin-flop transition in antiferromagnets [22].
In the case of antiferromagnet, a (xy) planar texture of
the orientational order parameter n̂ → (cosφ, sinφ, 0)
is associated with a collective (z-polarized) spin current
Jz ∝ z · (n̂ × ∂in̂) → ∂iφ flowing in the ith direc-
tion. While this extends directly to our spin-triplet case,
Eq. (1) gives the intuitive dual picture of Fig. 1 (c) for the
planar spiraling of the d-vector, i.e., d̂ = (cosα, sinα, 0).
Namely, as the phase of ∆↑↑ (∆↓↓) is given by φc ∓ α
(where φc is the overall phase of the superconductor),
the spiraling of the d-vector on the xy plane as shown in
Fig. 1 (b), or the gradient of α, would imply the coun-
terflow of the spin up-up and down-down pairs. The re-
sultant (z-polarized) spin current is ∝ −∇α [23]. Given
the same commutation relation and the same effective
Hamiltonian, it is natural that, in absence of dissipation,
the equations of motion for these two cases, the Leggett
equations the d̂-vector [8, 9, 24] and the Landau-Lifshitz
type equation for the Néel order parameter, are identical.
We further argue that both cases have the same phe-

nomenological form of dissipation as well. For the case
of the Néel order parameter n̂, such energy dissipation,
at the rate ∝ α(∂tn̂)

2 for low frequencies, known gener-
ally as Gilbert damping for collective magnetic dynam-
ics, has been understood phenomenologically [4, 25–27].
That such dissipation has not been featured in the 3He
superfluid literature is due not to the intrinsic nature of
the spin-triplet pairing but rather to the 3He spin-orbit
coupling originating from the very weak nuclear dipole-

dipole interaction [8]. In contrast, electrons in Sr2RuO4

are subject to the Ru atomic spin-orbit coupling [28] es-
timated ∼0.1eV [29]. In this work, we will consider the
decay rate of αnh̄γ2

e/χ for the condensate spin, the addi-
tion of which makes the Leggett equations of motion for
spin [30] equivalent to the Landau-Lifshitz-Gilbert type
equations for antiferromagnets:

∂td̂ =− d̂×
γ2
e

χ
S,

∂tS =d̂× (A∇2
d̂−Kd̂zẑ− αnh̄∂td̂), (3)

where α is the dimensionless Gilbert damping parameter
and n the Cooper-pair density. Through this set of equa-
tions, we can obtain the local d̂-vector dynamics, e.g.

the spin-wave excitation and the collective dissipation,
starting from the effective Hamiltonian of Eq. (2).
For the boundary conditions, at the interface between

the ferromagnetic lead and the spin-triplet superconduc-
tor, we consider a two-channel interface conductance due
to the spins aligned or anti-aligned to the lead magneti-
zation. We note that the SrRuO3 thin film has a 50%
transport spin polarization [31–33] with the magnetiza-
tion enhanced in the heterostructure [17], promising a
much higher spin injection/detection efficiency compared
to graphene-based devices used in a recent long-range
spin transport experiment [34]. In this Letter, we shall
consider only the simple case of the collinear lead mag-
netizations. Furthermore, the d-vector of the bulk spin-
triplet superconductor will be taken to be perpendicu-
lar to the lead magnetization, i.e., the Cooper pairs are
equal-spin paired along the magnetization direction; for
the Sr2RuO4 superconductor, the c-axis magnetic field of
200G reportedly suffices for the d-vector to flop into the
ab-plane [35]. This interpretation is based on the model
of the time-reversal symmetry broken p-wave supercon-
ductivity [11], which we will follow for the details of our
experimental proposals; however the phenomena we pre-
dict can arise in any spin-triplet superconductor close to
the SO(3) Cooper-pair spin rotational symmetry.
Long-range spin valve: The simplest physics that can

arise in our two-terminal setup is the spin-valve mag-
netoresistance due to the lead magnetization alignment.
We consider the case where the spin-triplet supercon-
ductor has the easy-plane anisotropy, that is, K > 0 in
Eq. (2) (for which a ≥ 200 G field is applied along the c-
axis), with the lead magnetization perpendicular to this

plane. In this case, we can take d̂z to be a small pa-

rameter in d̂ = (

√

1− d̂2z cosφz,

√

1− d̂2z sinφz , d̂z) and

|Sx,y| ≪ |Sz|. In such a case, [φz(r), Sz(r
′)] = ih̄δ(r− r

′)
gives us the conjugate pair, leading to

∂tφz =
γ2
e

χ
Sz, ∂tSz = A∇2φz − αnh̄∂tφz , (4)

where the first equation is a spin analogue of the Joseph-
son relation and the second is the spin continuity equa-
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FIG. 2. The setup for the DC voltage bias for the spin valve
(upper) and the AC bias voltage for the spin-wave detection
(lower), where x̂, ŷ, ẑ coincide with the crystalline a, b, c-axes,
respectively. For the upper figure, the lead magnetization is
along the c-axis, with the applied magnetic field Ha ≥ 200 G
along the c-axis giving us the easy plane d-vector configura-
tion on the ab-plane, hence the spiraling in the ab-plane. For
the lower figure, the lead magnetization is along the a-axis; as
the easy-axis d-vector anisotropy favors the alignment along
the c-axis, in the absence of an applied field, the AC bias volt-
age gives us the low-frequency standing wave of the d-vector
oscillating around the c-axis in the bc-plane.

tion with the relaxation term. One confirms the conden-
sate spin imbalance relaxation time to be χ/αnh̄γ2

e from
Eq. (4) through deriving ∂tSz +∇ · Jsp

z = −αnh̄γ2
eSz/χ,

where J
sp
z = −A∇φz. The parameters K, A, and α

of Eq. (4) are effectively renormalized by the Abrisokov
vortex lattice in the spin-triplet superconductor due to
averaging over the macroscopic length scale.
We consider the spin-up current and the spin-down

current to be independent at the interface:

IσL,R = ±gσσL,R(VL,R − h̄∂tϕσ/2e), (5)

where gσσL,R’s are the conductances for the σ-spin, IL,R the
σ-spin current into (out of) the left (right) lead, and VL,R

the bias voltage of the left (right) lead; this is due to the
spin-triplet superconductor having the equal spin pair-
ing axis collinear with the lead magnetization and hence
g↑↓ = 0. In the paragraph of Eqs. (1) and (2), we have
shown that the overall (or charge) phase of the super-
conductor is given by the average of the spin up-up and
the spin down-down condensate phase, φc =

∑

σ ϕσ/2,
while φz of Eq. (4) is given by φz =

∑

σ σϕσ/2. We
are interested here in the steady-state solution, i.e.,
∂tϕσ = const, for which we define the constant preces-
sion rate of ωc ≡

∑

σ ∂tϕσ/2 for the overall phase φc and
Ωs ≡

∑

σ σ∂tϕσ/2 for φz. For such solution, the follow-
ing continuity conditions can be applied to the charge
and spin supercurrents, respectively:

∑

σ

(IσL − IσR)=0,
∑

σ

σ(IσL − IσR)=2αneΩsSL (6)

(S is the bulk cross section area and L the spacing be-
tween the two leads [36]), the former from the charge
conservation and the latter from applying the steady-
state condition on Eq. (4), along with the spin current
loss ∝ αL in the superconductior.
The current through the Sr2RuO4 bulk can be ob-

tained from the interface boundary conditions and the
continuity conditions above, with the larger magni-
tude for the parallel magnetization than the antipar-
allel magnetization. We define the total conductance
gL,R ≡

∑

σ g
σσ
L,R and the conductance polarization

pL,R ≡
∑

σ σg
σσ
L,R/gL,R, which defines the relevant trans-

port spin polarization. Applying the continuity condi-
tions Eq. (6) on the interface boundary conditions Eq. (5)
and setting VL = −VR = V/2, we obtain

(

gL+gR pLgL+pRgR
pLgL+pRgR gL+gR+gα

)(

ωc

Ωs

)

=
eV

h̄

(

gL−gR
pLgL−pRgR

)

,

(7)

where gα ≡ 4αne2SL
h̄

. We can now obtain the dependence
of the charge current on the conductance polarization:

Ic=
∑

σ

Iσ=I0

[

1−
gLgR(pL−pR)

2

(gL+gR)(gL+gR+gα)− (pLgL+pRgR)2

]

,

(8)
where I0 ≡ gLgRV/(gL + gR). Note that Ic is max-
imized at pL = pR, when the steady-state angle φz re-
mains static. Different spin polarizations at the two ends,
on the other hand, would trigger spin dynamics and re-
sult in a nonzero dissipation rate of R = 1

2
αnh̄Ω2

s =
R0(1 − Ic/I0)

2/(pL − pR)
2 per volume of the supercon-

ducting bulk, where R0 = 8αn(eV )2/h̄. Given that pL,R

change sign on the magnetization reversal, the above re-
sults effectively give us the spin-valve magnetoresistance
of our heterostructure, i.e., a larger conductance for the
parallel magnetizations than for the antiparallel. Any
effect that the spin-triplet pairing may have on the mag-
netization, hence the conductance polarization [37], can
be ignored when the Curie temperature of SrRuO3 (∼
160K) [38] is two orders of magnitude higher than the
superconducting critical temperature (∼ 1.5K) Sr2RuO4.
We emphasize that the above magnetoresistance re-

sult is obtain solely for the current carried by Cooper
pairs. At a finite-temperature, quasiparticle contribu-
tion would generally result in an exponentially-decaying
magnetoresistance, negligible for the lead spacing beyond
the spin-diffusion length. By contrast, the current of
Eq. (8), which is carried by the Cooper pairs, gives us
the ∼ 1/L magnetoresistance for the large spacing limit.
Therefore, any magnetoresistance beyond the quasipar-
ticle spin-diffusion length should arise only below the su-
perconducting transition at Tc, upon the emergence of
a Cooper-pair condensate. For our Sr2RuO4 / SrRuO3

heterostructure, detection of magnetoresistance in the su-
perconducting state for the lead spacing larger than the
Sr2RuO4 spin-diffusion length can be taken as a trans-
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FIG. 3. Charge current versus frequency plotted for g̃ = 0.5,
L̃ = 2, Γ/ω0 = 0.1 and Ã = 0.2, with the orange curve
representing pL = pR = p and the blue pL = −pR = p. Note
that p = 0.2, 0.8 for the solid and dashed lines, respectively.

port evidence for the spin-triplet superconductivity. The
value of the spin-diffusion length itself can be extracted
by measuring the exponential decay of the (normal) mag-
netoresistance, both above and below the transition.
Electrically driven spin collective mode: For the case of

the easy-axis anisotropy of the d-vector, hence K < 0 in
Eq. (2),the spin collective excitation of the Cooper pairs
[8, 9, 39, 40] will modify the supercurrent transport under
the AC bias voltage. We shall still continue to consider
the case where Eq. (5) would be valid, i.e., the equal spin
pairing axis of the spin-triplet superconductor collinear
to the lead magnetizations. One way to satisfy this con-
dition would be to have the lead magnetizations collinear
to the a-axis, with no applied magnetic field; that would
leave the a-axis as the equal spin pairing axis, with the
d-vector moving on the the bc-plane. The equations of
motion, corresponding to spin injection polarized along
the x-direction, are then modified to

∂tφx=
γ2
e

χ
Sx, ∂tSx=A∇2φx−ω

2
0

χ

γ2
e

cosφxsinφx−αnh̄∂tφx,

(9)
where φx is conjugate to Sx and ω2

0 ≡ |K|γ2
e/χ is

the spin-wave energy gap. For the AC voltage bias
V = V0 exp(−iωt) at the frequencies far below the
plasma frequency, the steady-state solution for the spin
phase φx(x, t) = f(x) exp(−iωt) and the charge phase
φc(x, t) = g(x) exp(−iωt) behave differently. Hence
the spin equations of motion Eq. (9) gives us f(x) =
C+ coshκx + C− sinhκx, where v2κ2 = ω2 − ω2

0 − iωΓ,
with v ≡ γe

√

A/χ (the d̂-vector stiffness A defined in
Eq. (2)) being the spin-wave velocity and Γ ≡ αnh̄γ2

e/χ
the damping rate. By contrast, the charge current
Jc(x, t) = −ρ∂xφc, where ρ is the φc stiffness, should
be uniform, which means we can set φc(x, t) = const. −
x(Jc

0/ρ) exp(−iωt), with a constant Jc
0 . By imposing con-

sistency between the current obtained from the boundary
conditions of Eq. (5) and the dynamics of Eq. (9), we can
solve for Jc

0 and C±; Fig. 3 shows the numerical results
for Ic0 ≡ Jc

0S for the case of both pL = pR and pL = −pR.
Our numerical results show that magnetoresistance be-

comes significant at ω >
∼ ω0, where the collective spin

mode of the Cooper pairs is activated. For simplicity

we have set gL = gR = g and used the dimensionless
parameters g̃ ≡ gh̄v/2eA, L̃ ≡ ω0L/2v, and Ã = A/ρ.
For ω < ω0, in addition to barely noticeable magnetore-
sistance, the charge current amplitude does not oscillate
with frequency; it remains close to the DC value I0, un-
like the complete transport suppression in the magnetic
insulator [3]. In contrast, for ω > ω0, we see an oscil-
lation with the ω/ω0 period of about π/L̃, where the
current amplitude maxima for the antiparallel lead mag-
netization occur at the current amplitude minima for the
parallel lead magnetization and vice versa. As in the fer-
romagnetic insulator [3], we expect that for L̃ ≪ 1, i.e.
much shorter than the d-vector relaxation length [41], the
magnetoresistance of Eq. (8) is recovered for the static
bias, i.e., ω → 0.

We point out that the detection of the oscillation
shown in Fig. 3 would determine the yet-unknown energy
parameters for the spin-triplet pairing of Sr2RuO4. From
the effective Hamiltonian of Eq. (2), if we had known
accurately the field Hc along the c-axis that would ex-
actly restore the d-vector isotropy, the gap frequency ω0

should be just the electron Larmor frequency of this field
from the spin equations of motion of Eq. (9). However,
we know no more than the upper bound Hc < 200 G,
hence only ω0 < γe × 200 G = 3.5 GHz, while the AC
bias experiment, as shown in in Fig. 3, would allow us to
definitely identify the spin collective mode gap.

Conclusion and discussion: We have studied the DC
and AC current transport between the itinerant ferro-
magnetic leads with collinear magnetizations through the
spin-triplet superconductor. We showed here that mag-
netoresistance can arise for both cases due to the Cooper-
pair spin transport. For the DC bias, the persistence
of magnetoresistance for the lead spacing larger than
the quasiparticle spin-diffusion length can be taken as
a transport evidence for the spin-triplet pairing. For
the AC bias, the activation of magnetoresistance and
frequency dependent oscillation above the threshold fre-
quency will allow us to determine the spin anisotropy en-
ergy scale. All together, our work shows both a novel ex-
perimental realization of superfluid spin transport and a
transport signature of the spin-triplet superconductivity.
The recently fabricated SrRuO3/Sr2RuO4 heterostruc-
ture provides a promising experimental setup.
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