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Density functional theory was employed to study the stress-strain behavior and elastic instabilities during the
solid-solid phase transformation (PT) when subjected to a general stress tensor, as exemplified for semiconduct-
ing Si I and metallic Si II, where metallization precedes the PT, so stressed Si I can be a metal. The hydrostatic
PT occurs at 76 GPa, while under uniaxial loading it is 11 GPa (3.7 GPa mean pressure), 21 times lower. The Si
I → Si II PT is described by a critical value of phase-field’s modified transformation work, and the PT criterion
has only two parameters given 6 independent stress elements. Our findings reveal novel, more practical synthe-
sis routes for new or known high-pressure phases under predictable non-hydrostatic loading, where competition
of instabilities can serve for phase selection, rather than free energy minima used for equilibrium processing.
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Phase transformations (PTs) in solids are mostly character-
ized by equilibrium phase diagrams [1], whereas general non-
hydrostatic stresses offer novel synthetic routes for new or
known high-pressure phases. Here we augment temperature-
pressure (T -P ) equilibrium diagrams by stress (σσσ) tensor that
affect structural (and electronic) instabilities, providing guid-
ance for creating more accessible processing routes of such
phases under predictable non-hydrostatic deformation at sig-
nificantly lower mean pressures. Indeed, observed PTs occur
under significant deviation from equilibrium [2–5], with large
hysteresis. For carbon, the graphite-diamond PT at room tem-
perature occurs 2.45 GPa; however, due to hysteresis, the PT
is observed at 70 GPa [3]. The actual PT pressure deviates
from that of equilibrium due to an enthalpy barrier. When
thermal fluctuations can be neglected, the PT criterion is re-
lated to disappearance of the enthalpy barrier, i.e., to the lattice
instability. Hence, lattice instability conditions are necessarily
studied under hydrostatic, uniaxial, and multiaxial loadings
[6–12].

In experiments, a significant reduction in PT pressure oc-
curs due to deviatoric (non-hydrostatic) stresses and plastic
strains [5, 13–16]. For example, plastic shear reduces the
PT from hexagonal to superhard wurtzitic BN from 52.8 to
6.7 GPa [5] – an order of magnitude! This phenomenon is
extremely important from fundamental and applied points of
view, as it may reduce the PT pressure to a practical level for
high-pressure phases that exhibit unique properties.

The suggested physical mechanism responsible for this re-
duction is related to dislocation pileups associated with a plas-
tic strain [13]. As stresses at the tip of a pileup are propor-
tional to the number of dislocations in a pileup (typically 10
to 100), local stresses exceed the lattice instability limit and
cause nucleation of a high-pressure phase even at relatively
small external pressure. This was rationalized based on an an-
alytical model [13] and using a phase field approach [17, 18].
However, the phase field inputs for the PT instability criteria

for an ideal crystal under general stress tensor was assumed
hypothetically, as such criteria are not known for any material
[19].

Due to the technological importance of Si and its PTs, a
huge literature exists. Relevant are the PTs in Si I under hy-
drostatic and two-parametric nonhydrostatic loadings, studied
with density functional theory (DFT) [20, 21], and the lattice
instability under two-parametric loadings (unrelated to a PT)
[10, 22–24].

So, we perform a DFT study of the deformation process
under applied general stress, and determine the lattice insta-
bilities responsible for the cubic-to-tetragonal Si I→Si II PT,
along with metallization that can occur prior to Si II phase.
While finding the instability criteria under all six stress com-
ponents seems daunting, due to the large number of combi-
nations, an unexpected guidance came from the crystal lattice
instability criterion formulated within the phase-field method
[11, 12, 25, 26]. The key result is that Si I→Si II PT can
be described by the critical value of the modified transforma-
tion work. With normal stresses (σ1, σ2, σ3) acting along
〈110〉, 〈11̄0〉, and 〈001〉, respectively, the PT criterion is lin-
ear in normal stresses, depends on σ1 + σ2, is independent of
σ1 − σ2 and shear stress τ21, acting alone or with one more
shear stress, and depends on all shear stresses via theoretically
predicted geometric nonlinearity. The PT criterion has only
two material parameters for a general applied stress, which
can be determined by two DFT simulations under different
normal stresses.

Energy landscape. The DFT potential energy (vs. lattice
constants ai = bi and ci) is given in Fig. 1; the data is in sup-
plemental material [27]. We find two local energy minima,
corresponding to the fully relaxed (stress-free) Si I and Si
II, and a saddle point (SP) – the unstable state correspond-
ing to the enthalpy barrier (Fig. 1). The tetragonal cell of
Si I is bounded by (110), (11̄0), and (001) planes. The
DFT energies and lattice constants relative to the stress-free Si
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FIG. 1. (Color online) DFT energy of Si versus lattice parameters
c and a. Insets: Tetragonal (a= b, c) unit cells for stress-free Si II
(left), unstable SP (middle), and Si I (right).

I (a1 = 3.8653 Å, c1 =
√

2a1 = 5.4665 Å) are 0.2949 eV/atom
for Si II (a2 =4.8030 Å, c2 =2.6592 Å), and 0.4192 eV/atom
for the SP state (a= 4.4847 Å, c= 3.4763 Å). The calculated
c1 is +0.7% of experiment (5.43 Å) [28].

We designate tensors with boldface, e.g., III is the unit tensor.
Contractions of tensorsAAA = {Aij} andBBB = {Bjk} over one
and two indices in Einstein notations are AAA···BBB = {Aij Bjk}
and AAA:::BBB = Aij Bji, respectively. The inverse and transpose
ofAAA areAAA−1 andAAAT , respectively.

Deformation gradient FFF = FFF e ·UUU t, mapping undeformed
state of a crystal into a deformed state, is decomposed into
elastic FFF e and transformational UUU t parts. Deformation gradi-
ent UUU t changes the Si I stress-free cell to the Si II stress-free
cell; its diagonal components are Ut1 =Ut2 = a2/a1 = 1.243
and Ut3 = c2/c1 = 0.486. For a Tersoff potential [11, 12], it
is quite different: Ut1 =Ut2 = 1.175 and Ut3 = 0.553. We label
tetragonal directions a = b and c by indices 1, 2, and 3. We
use true Cauchy stress σσσ (force per unit deformed area) and
Lagrangian strainEEE = 1

2 (FFF T ·FFF − III).
Stress-strain σ3–E3 curves for fixed lateral stresses σ1 =σ2

are in Fig. 2, along with corresponding transformation paths
in (F1 = F2, F3) plane. The elastic instability occurs when
determinant of the elastic moduli tensor, modified by some
geometrically nonlinear terms, reduces to zero [6–10]. This
results in a condition that some elastic moduli (or combina-
tion thereof) reduce to zero. We will use an alternative (more
strict) condition: Elastic lattice instability at true stress σσσ oc-
curs at stresses above (or below for the reverse PT) which the
crystal cannot be at equilibrium. Instability points correspond
to the stress maximum for forward PT (and minimum for re-
verse PT) on the stress-strain curves (Fig. 2). Our condition
is more general and universal, because it is applicable even to
the cases with discontinuous or undefined derivatives of stress
with respect to strain.

A tetragonal stressed lattice of Si I transforms into a tetrag-
onal stressed lattice of Si II (Figs. 1 and 2), and the lattice in-
stability does not change this tetragonal symmetry. The slope
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FIG. 2. (Color online) (a) True (Cauchy) stress σ3 vs. Lagrangian
strain E3 for compression/tension along c for lateral stresses σ1 =
σ2 for Si I↔Si II PTs; (b) corresponding transformation paths in
(F1=F2, F3) plane. Hollow (solid) symbols mark instability points
for forward (reverse) PT. Dashed line shows hydrostatic loading.

of the stress-strain curve is continuous and is zero at instabil-
ity points. Under hydrostatic loading (dashed line in Fig. 2), a
cubic lattice looses its stability under tetragonal perturbations,
i.e., there is a bifurcation from a primary isotropic deforma-
tion to a secondary tetragonal deformation; hence, the deriva-
tive at the hydrostatic instability point is discontinuous. Both
under hydrostatic (σ1 = σ2 = σ3) and uniaxial (σ1 = σ2 = 0)
compression there are three stress-free states (Fig. 1): Si I, Si
II (stable or metastable enthalpy minima) and an intermedi-
ate unstable state at the SP (enthalpy barrier). Interestingly,
a stress-free Si II is metastable with stable phonons [29–31].
Thus, one could search for a pressure-plastic shear path for
arresting the metastable Si II, as suggested in [13] for any
metastable phase. In experiments, a stress-free Si II was not
observed.

Elastic lattice instability conditions under two-parametric
loading at σ1 = σ2 for forward (direct) (σ3d) and reverse
(σ3r) PTs are approximated by linear relationships in Fig. 3.
Tersoff-potential (TP) results from [11, 12] for Si I→Si II PT
are generally in good agreement with the present DFT results,
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FIG. 3. (Color online) Elastic instability vs. σ3 and σ1 = σ2 for
direct (D) Si I→Si II and reverse (R) Si II→Si I PTs from DFT and
TP-based results [11, 12], and metallization curve from DFT. Hydro-
static condition (σ1 = σ2 = σ3) is a diagonal (dashed black) line.

however there is a difference for tensile and small compres-
sive σ1, where TP results are slightly higher and nonlinear.
Under hydrostatic loading, PT pressure from DFT and TP is
75.81 GPa and 79.58 GPa, respectively.

The PT stress for uniaxial compression is −11.03 GPa
(σ3d) at E3 =−0.154. Then the pressure for uniaxial loading
is −σ3d/3 = 3.68 GPa, which is 75.81/3.68 = 20.6 times
lower than hydrostatic case. This characterizes very strong
effect of non-hydrostatic stresses on PT, which can partially
explain a scatter in experimental data under quasi-hydrostatic
conditions and a significantly lower experimental PT pressure
than the predicted hydrostatic instability pressure. The insta-
bility lines are described by σ3d = −10.9 + 1.20σ1 for σ1 ⊂
[−75.81; 17] and σ3r = 7.175+0.4209σ1 for σ1 ⊂ [−70; 17].
Theoretical strength is approximately σ3d = −10.6 + 0.77σ1

for σ1 ⊂ [−15; 12]. As it is close to our result, instability in
[23] is related to Si I→Si II PT.

While instability line for forward PT, calculated in [11, 12]
using TP, is quite close to our DFT results, for reverse PT the
TP results are completely different from DFT. Thus, none of
the classical potentials in [11, 12] (Tersoff, modified Tersoff,
and Stillinger-Weber) are able to describe the reverse PT.

Metallization. This electronic transition from semiconduct-
ing to metallic phase (band gap → zero) is caused by defor-
mation of Si I under combinations of σ3 and fixed σ1 = σ2

(Fig. 3). The band gap vs. compressive/tensile strain is given
in Fig. S2 [27]. The electronic transition is found to pre-
cede the structural PT for all combinations of stresses, i.e.,
a sufficiently deformed Si I under stress is metallic (Fig. 3).
This transition does not change the continuity of the stress-
strain curves and their first derivatives (Fig. 2); this differs
from the stress discontinuity in magneto-structural phase tran-
sitions [32]. The metallization curve is closed in the (σ3, σ1)

(a) (b)

FIG. 4. (Color online) Criterion for Si I→Si II PT for triaxial
stresses. (a) DFT results (points) lie very close to a plane described
by a constant value of modified transformation work in Eq. 3. (b)
Result in (a) rotated to visualize an approximate plane.

plane and surrounds the stress-free Si I; it can be approxi-
mated by two straight lines σ3m = −5.605 + 0.8417σ1 and
σ3m = 13.04 + 1.396σ1, and a parabolic section σ3m =
11.95 + 2.378σ1 + 0.16σ2

1 . While one of the metallization
lines is relatively close and approximately parallel to the Si
I→Si II PT line, two other lines are deeply in the region of
stability of Si I (Fig. 3). Metallization occurs at compres-
sive −36.82 GPa and tensile +13.91 GPa under hydrostatic
pressure; −5.4 GPa and +12.78 GPa under uniaxial loading
at σ1 = σ2 = 0; and −6.69 GPa and +8.79 GPa under biax-
ial loading at σ3 = 0. Hence, the effect of non-hydrostatic
stresses is extremely strong.

Elastic lattice instability under triaxial loading. Evidently,
DFT results for σ1 6= σ2 case (Fig. 4) suggest that the criterion
for forward Si I→Si II PT is described accurately in 3D space
of normal stresses by a plane

σ3 = −9.911 + 0.4145(σ1 + σ2). (1)

It is very surprising that the elastic instability for a material
with strong physical and geometric nonlinearities can be ap-
proximated by a linear criterion.

Lattice instability under general stress tensor – the phase-
field approach. As shown in [11, 12, 25, 26], a PT condi-
tion linear in normal stress can be derived by the phase-field
approach to martensitic PTs. Using several assumptions, the
instability Si I→Si II PT criterion is:

2W = σσσ:::FFF T−1
e · d

2ŪUU t
dη2

∣∣∣
η=0
···FFF T

e ≥ 2A, (2)

where deformation gradient ŪUU t(η) ≡ III + ε̄εεt(η), and other
material parameters (e.g., elastic moduli, and transforma-
tion strain ε̄εεt(η)) depend on the order parameter η, which
changes during the transformation process from η = 0 for
Si I [ε̄εεt(0) = 000] to η = 1 for Si II [ε̄εεt(1) = εεεt =
diag(εt1, εt1, εt3)]. W is called the modified transforma-
tion work [11], and A is the magnitude of the double-well

barrier. For cubic-to-tetragonal transformation, d
2 ¯UUU t

dη2

∣∣∣
η=0

=

2 diag(b1εt1, b1εt1, b3εt3), where bi are the coefficients in the



4

interpolation of ε̄εεt(η). For the loading by three stresses nor-
mal to the chosen above faces, all tensors in Eq. 2 are coaxial,
tensors FFF T−1

e and FFF T

e eliminate each other, and Eq. 2 reduces
to the linear modified transformation work criterion:

W = b3σ3εt3 + b1(σ1 + σ2)εt1 = A. (3)

The equality is used to describe combination of stresses at
the limit of stability and calibrate material parameters. W
reduces to the transformation work for b1 = b3 = 1. The
consequence of Eq. 3 for cubic-to-tetragonal PT is that, with
εt1 = εt2, the stresses σ1 and σ2 contribute to the instability
criterion via σ1 + σ2, as in Eq. 1. Comparing Eqs. 3 and 1
with εt1 = Ut1 − 1 = 0.243 and εt3 = Ut3 − 1 = −0.514
leads to A(θ)/b3 = 5.094 GPa and b3/b1 = 1.141.

When shear stresses τij are applied, causing nonzero de-
formation gradients F21, F31, F32, with rigid-body rotations
excluded by imposing a constraint F12 = F13 = F23 = 0,
Eq. 2 reduces to

W = b3σ3εt3 + b1(σ1 + σ2)εt1 + (4)
b1εt1 − b3εt3
F e11F

e
22

[τ32F
e
32F

e
11 + τ31(F e31F

e
22 − F e32F

e
21)] = A,

where (b1εt1 − b3εt3)/A = 0.143 and the terms proportional
to εt2− εt1 are eliminated. With transformation shears absent
in a cubic-to-tetragonal PT, the shear transformation work is
absent. The terms proportional to the shear stresses are due to
geometric nonlinearity (finite strains); they do not contain any
additional material parameters. Shear stresses change geom-
etry of the crystal, and this affects transformation work along
the normal components of transformation strain.

For the obtained parameters, and because F eii > 0 and
τijF

e
ij > 0, when τ32 and F e32 or τ31 and F e31 are applied

alone, contribution of shear stresses toW is positive, i.e., they
promote tetragonal instabilities. Shear stress τ21 (more ex-
actly, elastic shear strain F e21) alone or with τ32 does not con-
tribute to the instability condition; but τ21 contributes when
two other stresses, τ31 and τ32, are applied simultaneously,
and depending on signs of all shear stresses, τ21 may promote
or suppress tetragonal instability.

Shear stress-strain curves and shear lattice instability. In
typical shear stress–deformation gradient (τ31–F31) curves
(Fig. S3 [27]) shear instability starts at the maximum shear
stress. This instability does not lead to Si II but rather to pos-
sible amorphization or hexagonal diamond Si IV (which is
beyond our present focus).

Under an initial (before shear) hydrostatic compression, the
shear instability at an infinitesimal shear starts at 72 GPa, i.e.,
below the tetragonal mode of lattice instability. This may ex-
plain amorphization in nanocrystalline Si I under increasing
pressure when Si II PT is kinetically suppressed [33]. Amor-
phization may be caused by virtual melting [34] after crossing
metastable continuation of the melting line, as melting tem-
perature for Si reduces with pressure.

Effect of shear stresses on tetragonal instability. σ3 − E3

curves were obtained for different fixed shears, along the path

in the (F1 = F2, F3) plane corresponding to σ1 = σ2 before
shear. The instability stress (Fig. S4) is determined as the
local maximum of |σ3| (Fig. 2). While during shear σ1 6= σ2

but their sum σ1 +σ2 practically does not change. That is why
curves in Fig. S4 are given for the fixed values of (σ1 +σ2)/2.

Absolute and relative deviations between the actual insta-
bility stress σ3 and σan3 based on the analytical prediction (4)
are small (Figs. S5 and S6) and can be neglected. Thus, the
tetragonal lattice instability under action of all six components
of the stress tensor is described by the critical value of the
modified transformation work (Eq. (4)), which is (a) linear in
normal stresses, depends on σ1 + σ2, and has only two ad-
justable coefficients (b1 and b3); (b) independent of σ1 − σ2

and shear stress τ21 acting alone or with one more shear stress,
and (c) contains a geometric nonlinear term describing contri-
bution of all shear stresses without any additional adjustable
parameters.

In summary, we augmented standard T -P diagrams with
criteria for structural and electronic instabilities (PTs) under
a general applied stress tensor, providing guidance for more
accessible processing routes for new or known high-pressure
phases with novel properties. Our comprehensive DFT study
of the PT between semiconducting Si I and metallic Si II un-
der general applied stresses investigated stress-strain curves,
elastic lattice instabilities, and regions of metallization. Met-
allization occurs deeply in the region of stability of Si I and is
not caused by Si I→Si II PT. Deformed Si I becomes metal-
lic, and the effect of non-hydrostatic stresses is very strong.
The hydrostatic PT pressure is ∼21 times larger than for uni-
axial loading. Such a strong non-hydrostatic stress effect at
least partially explains the significant difference between the
observed PT pressure (9-12 GPa) and the instability pres-
sure of 75.81 GPa, and scatter in measured data under quasi-
hydrostatic conditions.

Our key result is that Si I→ Si II PT is given by a critical
value of the modified transformation work (Eq. 4). For a gen-
eral stress tensor (6 independent variables), the PT criterion
has just two parameters. Hence, PT criterion can be deter-
mined by just two DFT calculations versus applied stress.

These results are significant for creating new, more practi-
cal and economical processing routes for discovery and stabi-
lizing materials with novel properties. While comparison of
the Gibbs free energy minima defines thermodynamic equi-
librium (possibly unachievable in practice), we suggest com-
petition of instabilities to serve for phase selection. Critically,
this approach enables ways to reduce PT pressure due to non-
hydrostatic stresses by an order of magnitude or more [5, 13–
15]. They can also be used for quantitative studies of the in-
fluence of crystal defects on phase transitions [17, 18], and
quantitatively rationalize connections between PT conditions
for ideal and real (defective) crystals.

Acknowledgements: NAZ and DDJ are supported by the
U.S. Department of Energy (DOE), Office of Science, Ba-
sic Energy Sciences, Materials Science and Engineering Di-
vision. NAZ completed this work support by DOE’s Ad-
vanced Manufacturing Office, Office of Energy Efficiency &



5

Renewable Energy, through CaloriCoolTM. Ames Laboratory
is operated for DOE by Iowa State University under con-
tract DE-AC02-07CH11358. VIL and HC are supported from
NSF (CMMI-1536925 and DMR-1434613), ARO (W911NF-
17-1-0225), ONR (N00014-16-1-2079), and XSEDE (TG-
MSS140033 and MSS170015).

∗ zarkev@ameslab.gov
† haochen@iastate.edu
‡ vlevitas@iastate.edu
§ ddj@iastate.edu, ddj@ameslab.gov

[1] E. Y. Tonkov and E. Ponyatovsky, Phase transformations of el-
ements under high pressure, Vol. 4 (CRC press, 2004).

[2] N. A. Zarkevich and D. D. Johnson, Phys. Rev. B 91, 174104
(2015).

[3] T. Schindler and Y. K. Vohra, Journal of Physics: Condensed
Matter 7, L637 (1995).

[4] V. L. Solozhenko, High Pressure Research 13, 199 (1995).
[5] C. Ji, V. I. Levitas, H. Zhu, J. Chaudhuri, A. Marathe, and

Y. Ma, PNAS 109, 19108 (2012).
[6] R. Hill and F. Milstein, Phys. Rev. B 15, 3087 (1977).
[7] F. Milstein, J. Marschall, and H. E. Fang, Phys. Rev. Lett. 74,

2977 (1995).
[8] J. Wang, S. Yip, S. Phillpot, and D. Wolf, Phys. Rev. Lett. 71,

4182 (1993).
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