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The plasmoid instability in evolving current sheets has been widely studied due to its effects
on the disruption of current sheets, the formation of plasmoids, and the resultant fast magnetic
reconnection. In this Letter, we study the role of the plasmoid instability in two-dimensional mag-
netohydrodynamic (MHD) turbulence by means of high-resolution direct numerical simulations. At
sufficiently large magnetic Reynolds number (Rm = 106), the combined effects of dynamic alignment
and turbulent intermittency lead to a copious formation of plasmoids in a multitude of intense cur-
rent sheets. The disruption of current sheet structures facilitates the energy cascade towards small
scales, leading to the breaking and steepening of the energy spectrum. In the plasmoid-mediated
regime, the energy spectrum displays a scaling that is close to the spectral index −2.2 as proposed
by recent analytic theories. We also demonstrate that the scale-dependent dynamic alignment exists
in 2D MHD turbulence and the corresponding slope of the alignment angle is close to 0.25.

Introduction. Magnetohydrodynamic (MHD) turbu-
lence plays a fundamental role in the transfer of energy
in a wide range of space and astrophysical systems, from
the solar corona [1, 2] and accretion disks [3, 4], to the in-
terstellar medium [5, 6] and galaxy clusters [7, 8]. Indeed,
in all these environments, MHD turbulence is responsi-
ble for the transfer of energy from the large scales where
energy is provided to the small scales where it is dissi-
pated. Establishing a detailed understanding of MHD
turbulence is a pivotal but yet unresolved problem, with
far-reaching repercussions in many research areas.

An important feature of MHD turbulence is the ten-
dency to develop sheets of strong electric current density
[9–19]. These current sheets are natural sites of mag-
netic reconnection, leading to the formation of plasmoids
that eventually disrupt the sheet-like structures in which
they are born [20–29]. The first analytic calculation of
the impact of plasmoid formation on the MHD turbulent
cascade is attributable to Carbone, Veltri and Mangeney
[30], who proposed that current sheet structures in a tur-
bulent environment disrupt when γτnl ∼ 1, with τnl and
γ corresponding to the nonlinear eddy turnover time and
the growth rate of the fastest tearing mode, respectively.
Under this condition, they derived a length scale at which
the inertial range of turbulence breaks and found that the
energy spectrum steepens because of the plasmoid insta-
bility. Interestingly, by performing hybrid-kinetic simu-
lations, Refs. [27, 28] showed that plasmoids can also
directly contribute to the formation of a fully-developed
turbulent spectrum across the so-called ion break. To
date, there have been several attempts to further predict
the disruption criteria and the energy spectrum in the
plasmoid-mediated regime [31–35, 38–41].

Despite a series of analytic studies predicting a break
of the energy spectrum caused by the plasmoid insta-
bility, no definitive evidence has been provided by di-
rect numerical simulations of MHD turbulence so far.

This is mainly due to the limitation of computational
resources enabling the high magnetic Reynolds numbers
that are required to achieve a regime where the plas-
moid formation is statistically significant to affect the
turbulent energy cascade. This Letter aims to address
this problem by performing numerical simulations at un-
precedented large magnetic Reynolds numbers (up to
Rm = 106). Although recent theoretical arguments are
based on three-dimensional turbulence, we will consider
a two-dimensional scenario. In this way, we can achieve
high resolution to resolve the plasmoid instability associ-
ated with the high Rm and observe a concomitant alter-
ation in the spectrum of the turbulent cascade. Accord-
ing to our simulations, we demonstrate that plasmoids
can cause a steepening of the energy spectrum, which
exhibits a slope that is close to a value of −2.2.
Method. The governing equations of our numerical

model are the dimensionless visco-resistive MHD equa-
tions:

∂tρ+∇ · (ρu) = 0 , (1)

∂t(ρu)+∇·(ρuu) = −∇
(
p+B2/2

)
+∇·(BB)+ν∇2(ρu) ,

(2)

∂tp+∇ · (pu) = (γ − 1)
(
−p∇ · u + ηJ2

)
, (3)

∂tB = ∇× (u×B− ηJ) , (4)

where ρ, u and p are the mass density, velocity, and pres-
sure of the plasma, respectively; B is the magnetic field
and J = ∇×B denotes the electric current density. The
kinematic viscosity and the magnetic diffusivity are de-
noted as ν and η, respectively, while γ is the adiabatic
index.

We solve Eqs. (1)-(4) using the BATS-R-US MHD
code [42] in a domain {(x, y) : −L0/2 ≤ x, y ≤ L0/2},
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where L0 is set to unity. Periodic boundary conditions
are employed in both directions. Lengths are normal-
ized to the box size L0, velocities to the characteris-
tic Alfvén speed VA, and time to L0/VA. We initial-
ize the simulations by placing uncorrelated, equiparti-
tioned velocity and magnetic field fluctuations in Fourier
harmonics. More specifically, we set the initial veloc-
ity ux =

∑
amnn sin(kmx + ξmn) cos(kny + ζmn) and

uy =
∑−amnm cos(kmx + ξmn) sin(kny + ζmn), where

m and n indicate the mode numbers in x and y direc-
tions; the wavenumber km = 2πm/L0, and ξmn and ζmn

are random phases. Energy is initialized in the range
lmin ≤ (m2+n2)1/2 ≤ lmax, where lmin = 1 and lmax = 10
with amn = u0/[(m

2 + n2)(l2max − l2min)]1/2. We set the
magnetic field in the same way, with the constant u0 re-
placed by B0 and with different random phases. The
out-of-plane magnetic field is set to zero; hence, there is
no mean magnetic field. The constants u0 and B0 de-
termine the strength of the initial velocity and magnetic
fields. We set u0 = B0 = 2, which gives the initial en-
ergy E = 1

2 〈|u|2 + |B|2〉 ' 1
8 (u2

0 + B2
0) = 1, where 〈...〉

represents the spatial average. The plasma density and
pressure are initially set to constant values ρ = 1 and
p = 10, respectively.

We performed simulations with different values (4 ×
104, 8×104, 1×105, 2×105, 1×106) of magnetic Reynolds
number, given by Rm = u0L0/η. We vary the num-
bers of grid points from 20002 to 640002 for convergence
study, ensuring the resolution is high enough to resolve
the plasmoid instability associated with the highest Rm.
Our analyses are based upon two cases: Rm = 8 × 104

and Rm = 1× 106, with 640002 grid points. For the two
cases, the magnetic diffusivity and viscosity are chosen to
be (1) η = 2×10−6, ν = 1×10−6 and (2) η = 2.5×10−5,
ν = 1.25×10−5; therefore, the magnetic Prandtl number
Pm = ν/η = 0.5. We analyze our data from the snapshot
near the peak of the mean-square current density 〈J2

z 〉,
when the turbulence is fully developed (t ∼ 0.2).

Results. Fig. 1 depicts the simulated Jz with Rm =
1 × 106, and displays coherent structures with intermit-
tent intensity. In order to show plasmoids formed within
the time-evolving current sheets [e.g., 32, 34, 35], we
zoom into the selected regions. It is noteworthy that
the plasmoids grow locally within the current sheets in
our simulation [36], instead of being convected into the
current sheets by finite amplitude fluctuations [20, 25].
Chains of plasmoids are formed at different evolution
stages in multiple intense current sheets. As will be dis-
cussed below, the disruption of the current sheet struc-
tures due to plasmoids can alter the turbulence energy
spectrum by facilitating the energy cascade toward small
scales. In contrast, Fig. 2, where Rm = 8 × 104, reveals
that plasmoids barely form in the same zoomed-in re-
gions. The current sheet intensity for the low Rm case is
significantly lower than that of the high Rm case. This is
because the low Rm (equivalent to the Lundquist num-
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FIG. 1. 2D contour plots of the current density Jz at t = 0.2
for the simulation with magnetic Reynolds number Rm =
1×106. Zoomed-in subdomains are used for the illustration of
plasmoids. Copious formation of plasmoids occurs in multiple
intense current sheets because of the plasmoid instability.

ber, S = VAL0/η, in this study) prevents the current
sheet from further thinning to smaller scales.

We now examine the turbulence energy cascade by
computing the magnetic energy spectra, as shown in Fig.
3. The start of the inertial range, the transition scale
between the standard inertial range and the plasmoid-
mediated range, and the dissipation scale are denoted as
ki, k∗, and kd, respectively. The low and high Rm sim-
ulations share the same ki as a result of the identical
initial setup except the distinct η and ν. In the low Rm

case, k∗ is absent or indistinguishable from kd due to the
small scale separation. Compared with the high Rm sim-
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FIG. 2. 2D contour plots of the current density Jz (by choos-
ing the same zoomed-in boxes and identical colorbar range as
that of Fig. 2) at t = 0.2 for the simulation with magnetic
Reynolds number Rm = 8 × 104. Barely any plasmoids can
be observed in the current sheets due to the relatively low Rm

that prevents the current sheet from further thinning, there-
fore, less intense current sheets develop in this simulation.

ulation, the spectrum of the low Rm case has a shorter
inertial range and falls more quickly into the dissipation
range. For the longer inertial range of the high Rm case,
the formation of the plasmoids breaks the energy spec-
trum. The standard inertial range is characterized by a
spectral index of −1.5, in accordance with [45, 46]. For
k > k∗ the spectrum becomes steeper and close to a
spectral index of −2.2 [47], as recently proposed in Refs.
[40, 41] (also see Ref. [38], where the spectrum was pro-
posed to be bounded between the spectral indexes -5/3
and -2.3). This sub-inertial range is only displayed in the
high Rm case due to the copious formation of plasmoids
that characterizes this simulation. The co-occurrence of
both plasmoids and steeper spectral index in the high
Rm case is a reasonable indication that the steepening of
the energy spectrum results from the disruption of the
current sheet structures caused by plasmoids, which fa-
cilitates the energy cascade toward small scales.

Previously, the tendency of forming elongated,
plasmoid-prone current sheets at small scales has been
attributed to the effect of dynamic alignment [48], with
an underlying assumption that the alignment angle can
be employed as a proxy for current sheet inverse aspect
ratio [38, 39, 41]. We measure the dynamic alignment
angle θr as a function of the spatial separation between
two sampling points, ∆r, according to the definition
sin θr = 〈|δu× δB|〉 / 〈|δu||δB|〉 given by Ref. [43]. Here,
δB = B(r + ∆r)−B(r) is the difference in the magnetic
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FIG. 3. Magnetic energy spectrum of the MHD turbulent
cascade. ki is approximately the start of the inertial range,
kd represents the dissipation range, and k∗ indicates where the
spectrum breaks and thus the start of the sub-inertial range.
Both Rm cases share the same ki. In the low Rm case, k∗
is absent or indistinguishable from kd due to the short scale
separation. We choose ki based on the left edge of the fitted
power-law spectrum. k∗ is determined by the intersection of
the two fitted power-law spectra [37]. We estimate kd by the

condition that η
∫ kd

0
EB(k)k2dk accounts for approximately

half of the resistive dissipation power η 〈J2〉.

field between two points randomly sampled throughout
the entire domain; likewise, δu is the difference in the
velocity. The results, shown in Fig. 4, indicate that the
alignment angle is close to θr ∝ ∆r0.25 for a wide range
of ∆r. This scaling relation is analogous to the one that
characterizes 3D MHD turbulence [48], implying that the
dynamic alignment may be universal in MHD turbulence
regardless of the spatial dimensions. At a small spatial
separation ∆r, the higher Rm simulation is distinguished
by a smaller θr than the low Rm one. This indicates that
the high Rm case is associated with a higher current sheet
aspect ratio based on statistics as expected.

Although the alignment angle progressively diminishes
as the spatial separation decreases, the rather moder-
ate alignment with θr > 0.1 yields an aspect ratio no
more than O(10), which appears too low to cause the
onset of the plasmoid instability. On the other hand,
the existence of elongated and intense current sheets
(see Fig. 1), despite the moderate values of the dynamic
alignment, indicates that intermittency may play a key
role [11]. In particular, MHD turbulence is known to
be more intermittent in 2D than in 3D [12]. Given
that Fig. 4 only presents an averaged picture of the dy-
namic alignment, we further define an alignment angle
θ̃r for an individual pair of δu and δB with sin θ̃r =
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FIG. 4. The alignment angle θr in a log-log scale as a function
of the spatial separation ∆r. The dashed line indicates the
scaling law θr ∝ ∆r0.25. The higher Rm case has a smaller
alignment angle θr, especially at small spatial separations.

|δu × δB|/(|δu||δB|). Fig. 5 (a) depicts the probability

density functions (PDFs) of θ̃r calculated at separations
determined by ki, k∗ and kd as indicated in Fig. 3. At the
scale of ki, the PDFs of both Rm cases have a relatively
uniform distribution spanning over all the alignment an-
gles, indicating the alignment angle at the ki scale is
nearly isotropic. As the separation ∆r decreases, the
nonuniformity in the PDF gets amplified and the mean
value of the alignment angle shifts to smaller θ̃r. At the
kd scale, the higher Rm case exhibits more anisotropy
than the lower Rm case. Notably, there exists a sub-
stantial probability for the individual alignment angle θ̃r
to be significantly smaller than the averaged alignment
angle θr shown in Fig. 4.

To further quantify intermittency, we analyze the
PDFs of magnetic field increments |∆∆rB| = |B(r +
∆r) −B(r)| for various ∆r [44]. In Fig. 5 (b), we show
the PDFs of the x component ∆∆rBx at the same sepa-
rations as Fig. 5 (a). PDFs of ∆∆rBy, not shown here,
are analogous to that of ∆∆rBx. The PDFs at the dis-
sipation scale, kd, between the two Rm cases are highly
distinguishable; the high Rm case has a more distinct
non-Gaussian distribution. The large deviation from a
Gaussian distribution at k∗ and kd scales for the high
Rm case indicates that turbulence is highly intermittent
at those scales. Both Figs. 5 (a) and 5(b) help explain
the plasmoid formation in the elongated and intense cur-
rent sheets despite the statically moderate values of the
alignment angle.

Conclusions. In this Letter, we show, via direct nu-
merical simulations, that the plasmoid instability can
modify the MHD turbulent cascade for sufficiently large
magnetic Reynolds numbers. For the higher magnetic
Reynolds number considered (Rm = 1× 106), the energy
spectrum steepens relative to the inertial range when the
plasmoid instability becomes effective in disrupting cur-
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FIG. 5. PDFs of (a) the alignment angle θ̃r and (b) (∆Bx −
∆Bx)/Σ∆Bx (Σ∆Bx the standard deviation of ∆Bx) at dif-
ferent separations determined by ki, k∗ and kd as indicated

in Fig. 3. (a) θ̃r has a relatively uniform distribution at the
ki scale for both Rm cases. At the kd scale, the high Rm case
exhibits higher nonuniformity than the low Rm case. (b) At
the ki scale, both Rm cases show similar PDFs that can accu-
rately fit the Gaussian distribution. The PDFs at kd between
low and high Rm cases are clearly distinguishable; the latter
deviates more from the Gaussian distribution.

rent sheets. This occurs at relatively small scales, where
the combined effects of dynamic alignment and intermit-
tency produce current sheets more prone to the plasmoid
instability. In this plasmoid-mediated regime, we found
that the magnetic energy spectrum exhibits a spectral
index close to −2.2. Therefore, the disruption of cur-
rent sheets due to the plasmoid instability facilitates the
energy cascade toward small scales.

To quantify the effect of the dynamic alignment, we
measured the alignment angle θr, which decreases to-
ward small scales with a slope that is approximately cap-
tured by the scaling θr ∝ ∆r0.25. This is analogous to
what is found in 3D MHD turbulence, thus suggesting
a possible common explanation underlying this behav-
ior. Despite the fact that the dynamic alignment can
be related to the increase of the aspect ratio of current



5

sheets, for the magnetic Reynolds number investigated
here it is not sufficient to explain the plasmoid forma-
tion per se. However, intensified nonuniformity in θr and
significantly non-Gaussian distribution of magnetic field
increments are shown to occur at smaller scales for the
case with a high Rm, which may suffice to reach the crit-
ical current sheet aspect ratio required for the formation
of plasmoids within the typical eddy turnover time.

The alignment angle θr is not affected by the devel-
opment of plasmoids in our simulations, in contrast to
the theoretical predictions of Refs. [40, 41]. A possi-
ble explanation is that the plasmoids start to form and
evolve at moderate values of θr with the assistance of
intermittency. The impact of the plasmoid instability in
modifying the dynamic alignment could become manifest
at larger Rm, where the anisotropy becomes significantly
larger. Furthermore, it is shown in Ref. [41] that the
plasmoid-mediated regime cannot be characterized by a
true power-law due to the nature of the plasmoid insta-
bility in time-evolving current sheets. This phenomenon
seems to be captured by our numerical simulations based
on the adopted Rm. However, significantly larger Rm val-
ues are required to see a more clear and broader trend.

Several questions remain open, e.g., the role of dimen-
sionality (2D vs. 3D) on intermittency and energy trans-
fer between scales, the difference between decaying tur-
bulence and forced turbulence, and how to examine dif-
ferent existing theories against numerical simulations.
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