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Flows in fluid layers are ubiquitous in industry, geophysics and astrophysics. Large-scale flows
in thin layers can be considered two-dimensional (2d) with bottom friction added. Here we find
that the properties of such flows depend dramatically on the way they are driven. We argue that
wall-driven (Couette) flow cannot sustain turbulence at however small viscosity and friction. Direct
numerical simulations (DNS) up to the Reynolds number Re = 106 confirm that all perturbations die
in a plane Couette flow. On the contrary, for sufficiently small viscosity and friction, perturbations
destroy the pressure-driven laminar (Poiseuille) flow. What appears instead is a traveling wave in
the form of a jet slithering between wall vortices. For 5 · 103 < Re < 3 · 104, the mean flow in most
cases has remarkably simple structure: the jet is sinusoidal with a parabolic velocity profile, vorticity
is constant inside vortices, while the fluctuations are small. At higher Re strong fluctuations appear,
yet the mean traveling wave survives. Considering the momentum flux barrier in such a flow, we
derive a new scaling law for the Re-dependence of the friction factor and confirm it by DNS.

Century and a half of ever-expanding studies of turbu-
lence onset in three-dimensional (3d) channel and pipe
flows brought a wealth of fundamental and practical
knowledge, see e.g. [1] and the references therein. The
wall-driven flow is linearly stable, while the flow driven
pressure gradient or other bulk force can be unstable for
Re large enough [2, 3]. Notwithstanding this difference
and irrespective of linear stability, all flows undergo tran-
sition to turbulence at sufficiently high Re when finite-
amplitude perturbations persist [1]. Some perturbations
can take a form of traveling waves of finite amplitude [4–
6], yet all patterns are unstable and transient, so that the
3d flow is quite irregular already at moderate Re [1, 7].

In contrast, for quasi-two-dimensional channel flows it
is not even known if they are able to produce turbu-
lence at all. This is despite a rapidly expanding interest
motivated by the needs of industry, astrophysics, geo-
physics, and laboratory experiments in fluid layers and
soap films (see e.g. [8, 9], the recent collection [10] and
the references therein). To the best of our knowledge,
in all experiments in layers and films, external forces
and obstacles were needed to produce turbulence (see
e.g. [11]), and it is not known if such turbulence is
able to sustain itself in a channel flow past an obsta-
cle. The reason is that 2d ideal hydrodynamics conserves
energy (squared velocity) and enstrophy (squared vor-
ticity). Force at intermediate scales can generate two-
cascade turbulence with energy/enstrophy cascading re-
spectively upscales/downscales. On the contrary, in a
wall or pressure-driven flow, the input is at the largest
scale so that it is apriori unclear what kind of turbulence,
if any, can exist in the limit of low viscosity and friction.

Combining analytic theory and DNS, we answer here
this fundamental question. We describe how turbulence
appears and develops in pressure-driven flows: as “snake”
traveling wave — a jet meandering between counter-
rotating vortices and preserving its form even for strong
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FIG. 1: Vorticity snapshot for pressure-driven flows at (a)
Re = 1.42·104 with streamlines, (b) Re = 2.94·105; (c) vorticity
averaged over 7000 snapshots (distance 1400L) in the frame
of the negative vortex for Re = 2.94·105.

fluctuations, see Fig 1. Even more remarkably, we find
that wall-driven flows relax to laminar for all values of
viscosity and friction used and remain laminar for as long
as we were able to follow. Both findings substantially
widen our fundamental perspective on turbulence and
may lead to diverse practical applications.

We start our consideration by analyzing the interplay
between momentum and vorticity averaged along the
channel. Convection carries vorticity unchanged while
viscosity diffuses it, so that any turbulence must lead to
vorticity mixing and homogenization. We thus expect
the mean cross-channel vorticity profile in a turbulent
flow (outside viscous wall layer) to be more flat than the
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laminar profile. On the other hand, turbulence transfers
momentum to the walls faster than a laminar flow, thus
increasing the drag and decreasing the mean velocity.
Averaged along the channel, vorticity is the transverse
derivative of the velocity. The requirements on momen-
tum and vorticity profiles are compatible for pressure-
driven flows where turbulence flattens both the velocity
and vorticity profiles. On the contrary, the mean velocity
profile is monotonous for wall-driven flows, so decreasing
velocity in the bulk while keeping it at the walls would
make the vorticity profile more non-uniform. We then
conclude that momentum and vorticity requirements on
turbulence in 2d wall-driven flows are contradictory.

For a more formal argument, consider 2d Navier-Stokes
equation with unit density and a uniform friction rate α:

∂tv + (v · ∇)v = ν∆v −∇p− αv, ∇ · v = 0. (1)

Already for the frictionless case (relevant e.g. for flows
on superhydrophobic surfaces [12] or soap films under
low air pressure) dramatic difference from the 3d case
follows from the relation between momentum and vor-
ticity fluxes, unique for two dimensions. Denote u, v the
fluctuating velocity components respectively parallel and
perpendicular to the walls, which are placed at y = ±L/2
and move with ±V/2. Let us average x-component of (1)
with α = 0 both over time and over x (zonally). The re-
sult can be written using vorticity, ω = ∇× v:

∂y(νΩ + 〈uv〉) = νΩy − 〈vω〉 = 〈∇p〉. (2)

Here Ω(y) is the vorticity averaged over time and x. Tur-
bulence adds extra fluxes of x-momentum and vorticity,
related by the Taylor theorem: ∂y〈uv〉 = −〈vω〉. When
〈∇p〉 = 0, the first part of (2) gives the constancy of the
cross-flow momentum flux, whose direction is set by vis-
cosity at the wall. On the other hand, the second part
of (2) gives 〈vω〉 = νΩy, that is existence of turbulence
would absurdly mean that the vorticity flux is directed
along the mean vorticity gradient. In other words, the
right direction of the momentum flux (from large to small
values) requires the wrong direction of the vorticity flux
(from small to large) in 2d wall-driven flows. In essence,
laminar profile U = V y/L already has a constant vortic-
ity; one cannot excite turbulence to make it more flat.
If we add bottom friction then the laminar profile gets
an inflection point, but it is a vorticity minimum so that
the flow is getting more stable according to the Fjortoft
criterium [13]. Indeed, adding to the viscous flow extra
dissipation due to bottom friction could diminish fluctu-
ations but cannot create them.

These non-rigorous but plausible arguments suggest
that a wall-driven flow must relax to the laminar state,
U(y) = V sinh(y

√
α/ν)/2 sinh(L

√
α/ν/2), for any ν and

α. This is supported by DNS whose details are described
in [32]. Starting from different multi-vortex configura-
tions, we observe different transients and eventual re-
laxation to the laminar flow in all cases. These results
strongly suggest that the laminar wall-driven flow is the

global attractor in two dimensions at however small vis-
cosity and friction. To the best of our knowledge, this is
the first such example in the whole fluid mechanics.

From another perspective, impossibility of turbulence
in a 2d wall-driven flow can be related to sign-definite
mean vorticity and shear. Even when we initially cre-
ate vortices of both signs, the vorticity of the sign op-
posite to the mean is destroyed by the shear, while the
same-sign vorticity is homogenized back into the laminar
profile. On the contrary, for pressure-driven flows, the
mean vorticity has opposite signs at opposite walls, so
that turbulence cannot homogenize vorticity back to the
laminar profile.

We turn now to pressure-driven flows and define the di-
mensionless control parameters ReA = A1/2L3/2/ν and
RuA = A1/2/αL1/2. Here A = 〈∇p〉 is either the mean
pressure gradient divided by density or the gravity accel-
eration for soap films. There is a rich history of modeling
2d Navier-Stokes channel flows, see, e.g. [3, 16, 20] and
the references therein. In particular, extensively stud-
ied were subcritical instability of the laminar flow at
Rec = 5772 (where Re = 3LU/4ν and U is the flow
rate) [21] and streamwise localization of traveling wave
at Re < Rec [20]. To the best of our knowledge, the
largest Re = 104 was achieved in [16, 17], where transi-
tional turbulence was observed and fully developed tur-
bulence was estimated to appear around 2 · 105 which
were beyond computer resources back then. Here we ex-
plore higher Re never treated before; we also add uniform
friction to relate to real fluid layers.

We focus on a solution that appear from a generic ini-
tial condition in a wide interval of Re. To much sur-
prise we find that in relatively short channels with peri-
odic boundary conditions a periodic traveling wave is a
long-time attractor at intermediate Re, and even strongly
turbulent state at high Re has the mean profile of such
a form (Fig. 1). The transition to the steady-state is
slow and can be non-monotonic. In all cases, pressure-
driven flows relax to either of two states: the laminar
uni-directional flow or a “snake” traveling wave. In the
latter case, most of the flux occurs along a sinusoidal jet
meandering between two sets of counter-rotating vortices
rolling along the walls. An example of quite turbulent
evolution which results in a remarkably simple flow is
shown in Fig 2. While we cannot rule out switches be-
tween the states (as in 3d pipe flow) on an astronomical
time scale, we have not seen them once the statistical
steady state is established.

The time of transients can be reduced by starting with
a low-amplitude perturbation to mimic naturally devel-
oping instability of the laminar flow [2, 21]. Then, the
early evolution shows well-defined exponential growth.
Modeling a 12L the channel, we applied perturbations
with the wavelengths λpert = 3, 4, 6, 12L for ReA = 894
and RuA = 179. The largest growth rate γ was found for
λpert = 4L and is shown in Fig. 3a. In ReA−RuA plane,
γ = 0 line separates laminar and sinuous flows in Fig. 3b.
The inset in Fig. 3 shows the Reynolds number as a func-
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FIG. 2: Evolution of 12L pertubation for ReA = 894 at
tUlam/L=312, 370, 764, 2199, and 5079, respectively a)-e).
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FIG. 3: (a) The growth rate of 4L-perturbations versus fric-
tion for different viscosities. Marks 4L and 2L indicate wave-
lengths of the long-term sinuous flow, “T” indicates long-term
turbulent flow. (b) Stability diagram in the friction-viscosity
space. Inset: Re versus friction.

tion of RuA for ReA = 894. When friction is large, the
flow is laminar. As friction is reduced, the laminar flow
becomes faster until it transitions to the sinuous state at
RuA ≈ 100 when the flow rate drops. So one can speed
up the flow by increasing friction, facilitating transition
from sinuous to laminar regime.

Close to the thresholdReA, RuA, the saturated sinuous
flow in 4L and 12L channels has the wavelength λ = 4L
of the fastest-grown perturbation. At higher ReA, RuA,
initial growth of 4L mode is followed by the transition to
a shorter wavelength: as ReA, RuA increase, we observe
λ = 3L, 2.4L and eventually 2L. Reducing dissipation
further, we observe a sinuous-like flow with strong fluctu-
ations, which we call “turbulence”. Figure 3a shows the
growth rates for 4L perturbations where marks 4L, 2L, T
indicate long-term saturated states in 4L domain.

Let us now take a closer look at these long-term states
for frictionless systems. Traveling waves in short chan-
nels at intermediate Re were observed before [16, 18, 22].
Right above Rec [21], in the interval 5 ·103 <∼ Re <∼ 3 ·104

(ReA <∼ 1500), all saturated flows in 4L channel have
a form of sinuous traveling wave with small temporal
variations. In the longer 12L channel, the moderate-
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FIG. 4: Vorticity ω(x, y) time-averaged in the moving frame
of a vortex. Vertical slices are taken at x = 0, L/2, L, as
in Fig. 1. a) ReA = 516, b) ReA = 4000. The red line
is zonally averaged vorticity Ω(y) =

∫
ω(x, y) dx. Inset: Ω

in the boundary layer for ReA = 516, 362, 894, 1265, 2000,
2828, 4000, 5656, and 8000, from bottom to top.

Re runs (Re = 14200, ReA = 894 and Re = 6320,
ReA = 447) saturate at channel-filling periodic trains,
which fit respectively six and five wavelengths. Closer
to laminar threshold, for Re = 4620 (ReA = 316), we
have observed streamwise localization or train breakdown
[19, 20], where one out of four pairs of counter-rotating
vortices was periodically disappearing (see [32] for de-
tails).

For 400 <∼ ReA <∼ 1500, the spatially periodic mean
flow in a co-moving reference frame has a beautifully sim-
ple structure: The jet is sinusoidal with approximately
parabolic velocity profile, while vorticity is essentially
constant across each vortex, which appears as a plateau
in the vorticity cross-sections in Fig. 4a. Constant vor-
ticity inside the vortices can be explained in the spirit
of [23] as a consequence of viscosity being very small
and yet finite: The former means that vorticity must be
constant along the (closed) streamlines, while the latter
means constancy across the streamlines in a stationary
flow. The same argument suggests the vorticity flux con-
stancy across the jet, so that vorticity changes linearly
between opposite values at the separatrices.

At ReA ≈ 1500 the flow becomes turbulent. Chaotic
small vortices are created at the walls and swept into a
big vortex of the same sign thus feeding the large-scale
flow. For ReA >∼ 2000 and up to 8000 (Re = 2.94 · 105)
the relative level of velocity and vorticity fluctuations re-
mains constant within our accuracy. All turbulent flows
observed in 4L channel have a pronounced large-scale
structure of a jet and 2L-periodic chain of vortices, sim-
ilar to the sinuous flow. This is seen from comparison of
Fig. 1a with Fig. 1c averaged in the frame of the stronger
negative vortex (the other vortices are blurred by fluctua-
tions). While horizontally averaged Ū ,Ω for sinuous and
turbulent flows are of similar shape, time averaging ex-
pose qualitative difference: in the turbulent vortex, mean
vorticity has a peak rather than a plateau, see Fig. 4 and
Fig. 1.

From the topology of the mean flow, seen in Fig. 1a, we
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FIG. 5: (a) The Reynolds numbers, based on flow rate U and

wave speed S, versus pressure (inset: compensated by Re4/3).
Three crosses are for 12L, the rest for 4L channel. (b) Vortic-
ity gradient variance for ReA = 8000, 5656, 4000, and 2828,

from top to bottom, in coordinates ∇ω̃ = ∇ωRe−2/3
A ν/AL

and ỹ = (y/L− 1/2)Re
2/3
A . Inset: gradient of Ω

now derive the relation between the applied force A and
the flow rate U in the limit of large ReA. The transfer
of momentum (or equivalently vorticity) from the center
to the walls encounters two separatrices: separating the
vortex from the jet and from the wall layer. Vorticity is
diffused by viscosity across the separatrix, then is carried
fast by advection inside the vortex, and then transferred
by viscosity towards the wall. There are thus two vis-
cous bottlenecks (transport barriers) in this transfer: on
the jet-vortex separatrix and on the wall boundary layer.
The width ` of the separatrix layer can be estimated re-
quiring the diffusion time `2/ν to be comparable to the
turnover time L/U , which gives ` ' (νL/U)1/2 and the

effective viscosity νe ' U` '
√
νUL (we do not distin-

guish U and U in the estimates). The momentum flux
due to force must be carried by the viscosity towards the
walls, A ' νeU/L2, which gives the flow rate and turbu-
lent viscosity:

Re ' UL

ν
' L2A2/3

ν4/3
= Re

4/3
A , νe ' νRe2/3A . (3)

To describe the wall layer, note that v ≡ 0 at a wall.
Integrating (2) over y from wall to wall, we obtain
that Ω(L/2) = −U ′(L/2) = AL/2ν is always equal
to the laminar value, see the inset in Fig. 4b. Now
we estimate the width of the wall layer, U/U ′(L) '
LA2/3ν−1/3/ALν−1 ' ν2/3/A1/3 ' `, which confirms
that (3) is self-consistent. Alternatively, one derives (3)
stating that the momentum flux is proportional to the
velocity difference across the layer: AL ' UU` ' U2`/L.

Appearance of thin boundary layers at large Re (re-
vealed in details in [32]) must lead to a sharp maxi-
mum of the vorticity derivative: max Ωy ' Ω(L/2)/` '
LA4/3ν−5/3, which is much larger than Ωy(L/2) = A/ν,
derived from (2) at a wall. Away from the wall layer, tur-
bulence suppresses the mean vorticity gradient, as seen
in the insets in Figs 4b and 5b.

Numerical simulations support (3), see Figure 5. The

scaling Re ∝ Re
4/3
A continues through both weakly and

strongly fluctuating regimes, even though the proportion-
ality constant slightly changes at the transition (inset in
Figure 5a). The mean vorticity at the boundary layer
also follows the scaling (3), as seen in the inset in Fig 5b

plotted for the rescaled quantity Ω̃y = Ωy(y)/max Ωy =

νΩy/ARe
2/3
A . Since (3) follows from the spanwise struc-

ture, it holds approximately even for the broken train
(the leftmost cross in Figure 5a); the breakdown increases
the flow rate a bit, apparently by widening the jet.

Let us discuss the role of the turbulent fluctuations.
Flow dissipates energy and enstrophy, and the viscous
dissipation rate of the former is proportional to the lat-
ter: ν〈|∇v|2〉 = ν〈ω2〉. Law (3) gives the same es-
timate for the pressure work and the dissipation rate:
νΩ2 ' νU2/`L ' A5/3Lν−1/3 ' AU , that is the mean
flow is able to dissipate energy by itself. Indeed, the DNS
data in Fig. 4 show that turbulent enstrophy fluctua-
tions are smaller than mean, while velocity fluctuations
are negligible. Enstrophy dissipation is determined by
the vorticity gradients shown in Figure 5b. The mean
gradient follows (3), while variance (and the enstrophy
dissipation) near wall is much larger and grows with Re
faster than the mean. The numerics thus confirm that
the enstrophy is dissipated by turbulence rather than by
the mean flow.

According to (3) the friction factor of 2d channel,

AL/U2, decays as Re
−2/3
A ∼ Re−1/2, faster than in 3d,

where one finds the empirical Blasius law Re−1/4 for
moderate Re and the logarithmic decay for large Re.
Such Re−1/2 scaling was actually observed in decaying
grid-generated turbulence in soap film experiments and
hypothesized to be related to enstrophy cascade [24].
Here we have shown that this law is quite universal.

The law (3) is expected to hold when the time of the
momentum transfer to the wall, U/A ' L(Aν)−1/3, is
shorter than the friction time α−1, otherwise friction im-
poses linear regime with U ∝ A. This requires force
exceeding both viscous and friction thresholds: A �
ν2L−3, (αL)3/ν. Discuss briefly the role of the third di-
mension and the layer thickness h. For planar flows with
open top and no-slip bottom, α = 3ν/h2, while vertical
motions invalidate the very notion of α. An ability of
moving walls to excite turbulence must depend on h: we
expect turbulence when the wall Reynolds number V h/ν
becomes large. How wall-generated 3d turbulence will be
distributed over a wide thin channel deserves future stud-
ies, particularly on account of strong planar flows sup-
pressing vertical motions [15]. For pressure-driven flows,

the validity of (3) requires ` ' LRe−2/3A = LRe−1/2 � h.
As Re approaches (L/h)2, we expect the decay of the fric-
tion factor with Re to slow down and eventually converge
to the 3d values observed in rectangular ducts [25].

Traveling wave pattern thus enhances effective viscos-
ity and suppresses the flow rate compared to the laminar
regime. It is instructive to compare (3) with the en-
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hancement of diffusivity κ by the factors Pe1/2 for cellu-
lar [26, 27] and Pe1/3 for wall-attached flows [28], where
Pe = UL/κ. That enhancement leads to acceleration of
flame fronts [29] and other phenomena. Similar to (3),
interplay between small noise and advection universally
leads to the 1/3-scaling with noise amplitude: for tum-
bling frequency of a polymer in a shear flow [30], for
the Lyapunov exponent of an integrable system under
stochastic perturbation [31].

To conclude, wall-driven 2d flows relax to laminar at
all values of viscosity and friction used. We described the
traveling wave which replaces the pressure-driven lami-
nar flow. In distinction from 3d, as the Reynolds num-
ber grows, the fluctuations increase yet the mean flow
preserves its traveling-wave “snake” form. A remarkable

property of 2d snake are separatrices, which modify mo-
mentum transport to the walls leading to a new scaling
law for the friction factor.
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