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Topological photonics has emerged recently as a smart approach for realizing robust optical cir-
cuitry, and the study of nonlinear effects is expected to open the door for tunability of photonic
topological states. Here we realize experimentally nonlinearity-induced spectral tuning of electro-
magnetic topological edge states in arrays of coupled nonlinear resonators in the pump-probe regime.
When nonlinearity is weak, we observe that the frequencies of the resonators exhibit spectral shifts
concentrated mainly at the edge mode and affecting only weakly the bulk modes. For a strong
pumping, we describe several scenarios of the transformation of the edge states and their hybridiza-
tion with bulk modes, and also predict a parametrically driven transition from topological stationary
to unstable dynamic regimes.

Introduction. Topological photonics has recently
emerged as a universal tool to achieve disorder-immune
guiding of electromagnetic waves [1–5], but practical real-
izations of topological photonic devices require dynamic
tunability. Despite the latest experiments on topological
lasers [6–9] and several theoretical proposals for tunable
nonlinear devices [10–16], experiments on reconfigurable
topological structures are still scarce. Tuning of topo-
logical photonic edge states by temperature and liquid
crystal orientation has been reported in [17] and [18],
respectively. Another important recent milestone is the
demonstration of nonlinearity-driven topological transi-
tion in electric circuits [19]. However, nonlinear tun-
ability of topological electromagnetic edge states has not
been shown so far and their fate in the nonlinear regime
remains unclear.

In this Letter, we realize experimentally nonlinear
spectral tuning of topological edge states of electromag-
netic waves in one-dimensional arrays of identical elec-
tromagnetic resonators with Kerr-type nonlinearity. The
resonators are separated by alternating long and short
links, being coupled electromagnetically. Our concept is
illustrated in Fig. 1. In the linear regime (a), an ar-
ray of resonators is described by the Su-Schriffer-Heeger
(SSH) model, and it represents a simple one-dimensional
topological structure [20]. The system supports an elec-
tromagnetic topological mode localized at the edge ter-
minated by the long link (the right edge in Fig. 1). This
state occurs at the resonant frequency of an individual
resonator being localized spectrally in the center of the
band gap that appears due to a difference of the coupling
coefficients for long and short links. When the struc-
ture is pumped homogeneously at the central frequency
(see Fig. 1, left column), nonlinear spectral shifts of the
resonator frequencies are induced. These spectral shifts
modify the spectrum of linearized excitations, as shown
in the bottom row of Fig. 1. Since the pump is at the res-
onance, the spectral shift is at its maximum for the edge
resonator, affecting the corresponding edge state while
the bulk spectrum remains mostly unchanged (Fig. 1f).

As such, even though the pump is homogeneous, the res-
onators are identical, and all tunneling coupling links
are pump-independent (contrary to Refs. [19, 21]), the
edge state exhibits a nonlinear spectral shift. At stronger
pumping we expect that the edge state is destroyed due
to its interaction with the bulk modes, while the nonlin-
ear spectral shifts become large and identical for all the
resonators.

While the nonlinear shift of the edge state frequency
seems obvious, its inevitable destruction at high pump-
ing is less evident. The nonlinear interaction between
bulk and edge modes is still not understood and the
physics of nonlinear topological systems is known to be
very rich [11, 22–25]. In fact, at relatively low intensities
the bulk modes are less affected by the nonlinearity than
the edge state because the pump is in resonance with the
linear edge state. At high pumping the edge state is non-

FIG. 1. (a,b) Arrays of resonators under (a,c,e) weak and
(b,d,f) strong external homogeneous pumps. The pump is
show by red colors. (c,d) Pump-induced spectral shifts of the
resonant frequencies. (e,f) A change the linear spectrum of
both bulk (green) and edge (red) states. A dashed vertical
line marks the resonant frequency in the linear regime.
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linearly detuned and its intensity becomes comparable
with the bulk modes. So it is not obvious that the edge
state must necessarily merge with the continuum. This
fundamental question is inherent to the resonant non-
linear tuning, and differs our concept from nonresonant
tuning mechanisms [17, 18]. Next, we present a rigorous
theoretical model and then discuss experimental results
in the pump-probe setup.

A topological chain of nonlinear oscillators. We con-
sider a topological array of coupled oscillators with fast
(instantaneous) cubic nonlinearity described by a system
of equations

dan
dt

= −Γan− i|an|2an + tn,−an−1 + tn,+an+1 +P , (1)

where an is a normalized amplitude of the n-th oscillator
(n = 1 . . . N), Γ is a damping coefficient, and P is an
amplitude of resonant homogeneous pump. Alternating
strong and weak nearest-neighbor couplings are t0,− =
tN,+ = 0, t2k,− = t2k−1,+ = t1, t2k,+ = t2k−1,− = t2.
The appropriate normalization allows one to set the co-
efficient in front of the nonlinear term to 1 without the
loss of generality. Equation (1) can be applied to dif-
ferent systems [26, 27]. In the case of electromagnetic
resonators, an stand for the slow-varying complex ampli-
tudes of the current. Our goal is to find the stationary
states excited by the pump and study the linear spectrum
and stability.

We distinguish here two fundamentally different prob-
lems. In a general case, both nonlinear stationary states
and linearized modes excited on the background of non-
linear solutions can be either localized or delocalized.
When the pump is at the resonance, we expect a sta-
tionary localized nonlinear mode. On the other hand,
the spectrum of linear excitations can include localized
modes (such as edge states) as well. However, in those
cases the corresponding pump dependencies differ for
nonlinear stationary modes and linearized edge states.

First, we consider high-quality resonators (Γ� |t1,2|).
We study the chain of N = 7 resonators where a localized
topological state is formed at the right edge (n = N) with
weak link |t2| < |t1|. The results for stationary states are
summarized in Fig. 2. Panel (a) shows the average am-

plitude in the bulk, defined as |a1−6|2 =
∑6

n=1 |an|2/6,
vs. the pump amplitude P . For 1 . P . 2, these results
suggest that our system exhibits bistability (red lines).

Our main goal is to study the edge states, so we ex-
amine a difference of the amplitude of the last oscillator
and the amplitudes in the bulk oscillators. A localiza-
tion strength can be defined by the edge-to-bulk ratio
µ ≡ |a7|/|a1−6| shown in Fig. 3(b) as a function of the
pump. At weak pump values, the localization parameter
µ is considerable larger than unity indicating the pres-
ence of a stationary edge state. Indeed, from the spatial
distribution of the stationary state [Fig. 3(c)] we observe
that the amplitude is the largest for the last resonator.
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FIG. 2. (a) Average resonator amplitude |a1−6| and (b) lo-
calization degree µ for the amplitudes of the bulk and edge
states vs. pump amplitude.Blue (red) lines correspond to lin-
early stable (unstable) solutions. Panel (c) shows spatial dis-
tributions of the normalized amplitudes at the points 1-4 on
the bifurcation diagram. Distance of a red spot from the cen-
ter of the ring is proportional to the absolute value of the
amplitude, whereas the angle shows its phase with respect
to the pump with in-phase oscillations corresponding to the
direction to the left. Calculation parameters are Γ = 0.02,
t1 = 1, t2 = 0.48.

The stationary edge state survives until the whole system
looses its stability at a threshold pump value, as shown
in Fig. 3(c) for the points 1 and 2 of the bifurcation di-
agram. For larger values of the pump, the edge state is
eventually destroyed. Correspondingly, the localization
parameter µ approaches unity, and the spatial distribu-
tions for the points 3 in Fig. 3(c) is more homogeneous.

FIG. 3. Real (a) and imaginary (b) parts of the numerically
calculated eigenfrequencies of the modes as functions of the

average amplitude |a1−6| =
√∑6

n=1 |an|2/6. The eigenfre-

quencies with positive imaginary part [red area in panel (b)]
correspond to the unstable modes. The yellow stripes show
the approximate positions of the eigenvalues if the paramet-
ric effects are disregarded. The edge state is denoted as “s”.
The green rectangles show the frequencies of the continuum
of the linear excitations on zero background. The calculation
parameters are the same as in Fig. 2.
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There exists a multistability regime where several differ-
ent solutions can be supported by the same pump. Even
if the edge state disappears the field distribution is not
necessarily fully uniform. Due to the boundary effects
the amplitudes of the edge resonators differ from those
in the center of the structure, although no edge localiza-
tion is evident, see (3) in Fig. 2(c). At even higher pumps
the state becomes uniform, cf. (4) and (3) in Fig. 2(c).

Eigenvalues of the linear spectra on the background
of nonlinear modes are shown in Fig. 3 as functions of
the average intensity of six resonators. For weak intensi-
ties, the spectrum can be separated into the bulk modes
lying inside the allowed bands of the infinite structure
(ω ∈ ±[t1 − t2 . . . t2 + t2], green rectangles in Fig. 3(b))
and the edge mode (ω = 0). Importantly, the lineariza-
tion produces a parametric term a2nδa

∗
n, where δan is the

excitation amplitude. Hence, the linear modes contain
two parametrically coupled harmonics (cf. the Bogoli-
ubov topological polaritonic modes in Ref. [28]). That
is why the eigenfrequencies are double degenerate in the
linear limit but at a finite pump the degeneracy is lifted.
The yellow stripes mark the eigenvalues which are close
to the eigenvalues of the system with omitted parametric
term, and they have much larger excitation efficiency. In
agreement with our expectations in Fig. 1, the central
yellow stripe corresponding to the edge state (marked by
“s”) exhibits a nonlinear shift, much stronger than that
for bulk modes.

If the pump becomes strong enough, the instability sets
in, as seen from the imaginary parts of the eigenfrequen-
cies in Fig. 3(b). At low intensities, the eigenfrequencies
are purely real, then some of the eigenvalues collide pro-
ducing pairs of complex conjugated eigenvalues. When
the real part of an eigenvalue becomes positive (i.e., it en-
ters the red region) the system acquires an exponentially
growing perturbation and becomes unstable. Depending
on parameters, the first instability can be produced by
a collision of the edge state with a bulk mode or by a
collision of two bulk modes. Summarizing the results in
Figs. 2 and 3, we can claim that the mechanism of the
edge state collapse is a dynamical instability developing
in the system. The nonlinear stage of instability is stud-
ied by direct numerical simulations, and it is found that
the system undergoes a complex dynamics.

However, the pump-dependent dependence described
above is not the only scenario. In the case of higher
losses, Γ & |t1,2|, the parametric instability becomes less
important. The localization length of the edge state then
grows monotonically with the pump due to hybridization
with the bulk modes until it gets eventually delocalized
while the system remains stable, see Fig. S1 and Fig. S2
in Supplementary Materials [29] for more details.

Pump-probe experiment. Our experimental results are
presented in Figs. 4,5. In experiment, we have fabricated
an array of N = 7 broadside-coupled split-ring resonators
with the magnetic dipole resonance at the f0 ≈ 1500 MHz

frequency. The simplest way to tune the structure would
be to modify its parameters mechanically [29, 30]. Here
we focus on nonlinear tunability by varactor diodes that
potentially allow dynamical tuning at the frequencies
& 100 MHz. A varactor diode has been mounted inside
the gap of each ring to tune its frequency [29, 31]. The
spectrum of linearized excitations, theoretically consid-
ered in Fig. 3, can be directly accessed in the spatially-
resolved pump-probe setup. The experimental scheme is
sketched in the inset of Fig. 4(d). The monochromatic
homogeneous pump at the resonance f = f0 has been
provided by a rectangular horn antenna. The probe sig-
nal has been measured near each resonator by a small
loop antenna connected to the receiving port of the an-
alyzer. The probe spectrum of the reflection coefficient
ReS11 for the loop antenna has been determined as a
function of its position and the pump power.

Figures 4(a,b) show both theoretical and experimental
spectra in the linear regime. A spectral signature of the
edge state is clearly seen by the presence of the central
resonance at the frequency f0, when the probe is close
to the right edge (black and magenta curves for n = 5, 7,
respectively). Interestingly, the spectrum at the second-
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FIG. 4. (a,b) Spatially-resolved pump-probe spectra cal-
culated numerically and measured experimentally. (c) Fre-
quency of the edge state vs. pump power. A black solid line
corresponds to theoretical results, and dots stand for exper-
imental data. Green regions mark the allowed bands of an
infinite structure calculated in the nearest-neighbor approxi-
mation. (d) A ratio of the amplitude of the spectral maximum
associated with the edge state and the amplitude of the most
intensive spectral maximum associated with a bulk mode. A
blue solid line corresponds to numerical results and dots mark
experimental data. Curves 1–7 correspond to the resonators
from left to right.
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to-last resonator, n = 6 (cyan curve) does not manifest
a central resonance. This reflects the spatial structure of
the edge state in the Su-Schrieffer-Heeger model, that, in
the nearest-neighbor approximation, has nonzero ampli-
tudes only at the modes with odd n. Other resonances
in the spectrum correspond to bulk modes, and they are
spectrally located within the allowed bands of the infi-
nite array (shaded green rectangles). The coupling co-
efficients between the resonators are fitted to match the
experimental spectrum with the initial values provided
by the rigorous full-wave simulations in the CST Mi-
crowave Studio package. We also include the coupling
of the resonators to the next neighbors which is taken
to be ≈ 17 times weaker then the coupling in dimers,
t3 = 0.06t1, with t1 = 55 MHz, t2 = 0.48t1. The ex-
perimental pump power is related to the dimensionless
amplitude in Eq. (1) as Pexp(W) = 0.43 · P 2. More de-
tails are given in [29]. We take into account weak non-
locality of the probe, that senses the current not only in
the nearest resonator but also in the adjacent resonators.
Namely, the signal measured at n-th resonator is given
by En = an+χ1an+1+χ2an−1+χ3(an+2+an−2) for odd
n, and En = an+χ1an−1+χ2an+1+χ3(an+2+an−2), for
even n, where the coupling coefficients are χ1 = −0.12,
χ2 = −0.1 and χ3 = −0.075. A negative sign comes from
anisotropy of the magnetic dipole. Nonlocality results in
asymmetry of the excitation efficiencies for upper and
lower allowed bands. Since the upper band corresponds
to odd Bloch functions and χ1 < 0, it is sensed by a
probe with higher efficiency than for the bottom band.

Our main experimental result is summarized in
Fig. 4(c) for the edge state frequencies extracted from
the probe spectra as a function of the pump power (raw
spectra are given in Fig. S3 [29]). The central peak,
corresponding to the edge mode, shifts with the pump
power approaching the bulk bands. Experimental data
(stars) are in a good agreement with our theory (black
curve). This provides a direct experimental observation
of the nonlinearly tunable electromagnetic topological
edge state. We also compare the amplitude of the spec-
tral maximum corresponding to the edge state to the
most intense spectral maximum associated with a bulk
mode. This ratio is plotted in Fig. 4(d) as a function
of the pump power (stars). The edge state becomes less
pronounced for higher pump intensities.

The destruction of edge state is reliably established but
the specific mechanism is not obvious from experiment.
The apparent absence of the discontinuities in the mea-
sured dependences on the pump power suggests that the
instability does not take place. At low pump power, we
observe a good agreement between the theory and exper-
iment. The development of instability at high intensities
is a more subtle issue depending on homogeneity, dis-
persion and nonlinearity of the resonators and diodes as
well as on the accuracy of the fit parameters. Even the
probe antenna itself introduces an inhomogeneity not ac-
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FIG. 5. (a) Magnetic field measured at the distance l = 2
mm from the structure. (b) A ratio of the normalized ampli-
tudes of the bulk and edge resonators vs. pump power. Solid
lines correspond to numerical simulations, and dots mark the
experimental data.

counted by the model. The variation of the parameters of
the diodes possibly explains why theoretical and experi-
mental results match better in the linear regime. More-
over, the conservative cubic nonlinearity in Eq. (1) does
not fully describe the real varactors. As a next approxi-
mation, we consider in [29] the role of dissipative nonlin-
earity and the decrease of the oscillator coupling to the
pump at high pump strength. Account for such effects,
presented in Figs. S4,S5 in [29] can significantly improve
an agreement between theory and experiment. Further
improvements would require consideration of saturable
and non-instantaneous nonlinearity [32]. The quantita-
tively precise description is out of the scope of the present
work. The main experimental result, nonlinear frequency
tuning of edge state in Fig. 4(c) is well described by a
simplistic model.

We also analyze a stationary map of the electromag-
netic field at the pump frequency vs. pump power. In-
stead of measuring reflection S11 for an emitting probe
loop antenna, we measure the transmission S12 from a
horn antenna (a pump) to a probe. The input signal at
the frequency f0 is sent to the pump antenna only. Fig-
ure 5(a) shows the measured data for weak pump. The
field localization directly visualizes the edge state. When
the pump power increases, the stationary field becomes
delocalized, as shown in Fig. 5(b) and Fig. S4 in [29].
Blue (black) stars show the power dependence for a ra-
tio of the measured signal E to the pump power for the
resonators with n = 5 and n = 7. In the same panel, we
show the calculated dependencies of the same ratio E/P .
The calculated amplitude for n = 7 matches experimen-
tal data reasonably well. The signal measured from the
oscillator n = 5 has the second largest amplitude, and
is well described by calculations. For large pump power,
the stationary state becomes delocalized. A background
of the signal, corresponding to n < 5, depends weakly
on the pump power, being governed likely by long-range
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couplings.

Conclusion. We have studied nonlinearity-induced
tuning of the electromagnetic topological edge states in
topological arrays of coupled nonlinear resonators with
alternating weak and strong couplings. Combining non-
linear transmission and pump-probe experiments, we
have demonstrated both stationary nonlinear states and
linearized modes. We have revealed and described differ-
ent scenarios of the pump-induced decay of topological
states. Our results provide important insights into the
physics of nonlinear tunable topological structures.
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