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The quantum capacity of a quantum channel captures its capability for noiseless quantum commu-
nication. It lies at the heart of quantum information theory. Unfortunately, our poor understanding
of nonadditivity of coherent information makes it hard to understand the quantum capacity of all but
very special channels. In this paper, we consider the dephrasure channel, which is the concatenation of
a dephasing channel and an erasure channel. This very simple channel displays remarkably rich and
exotic properties: we find nonadditivity of coherent information at the two-letter level, a substantial
gap between the threshold for zero quantum capacity and zero single-letter coherent information, a
big gap between single-letter coherent and private informations, and positive quantum capacity for
all complementary channels. Its clean form simplifies the evaluation of coherent information substan-
tially and, as such, we hope that the dephrasure channel will provide a much-needed laboratory for
the testing of new ideas about nonadditivity.

Introduction. A key goal of quantum information
theory is to extend the classical theory of information,
as pioneered by Shannon [1], to include quantum effects
like superposition and entanglement. The capacity of a
noisy communication channel plays a fundamental role
in classical information theory: it is the optimal noise-
less communication rate that a noisy channel can sup-
port. In the quantum setting, a noisy communication
channel has multiple capacities since it can be used to ac-
complish different communication tasks. Thus, a quan-
tum channel N has a capacity for classical communica-
tion C(N ), quantum communication Q(N ), and private
classical communication P(N ). It is a central challenge
of quantum information theory to evaluate these capac-
ities, understand them, and determine their mathemati-
cal properties.

The capacity of a classical channelN : X → Y is given
by C(N ) = C(1)(N ) = maxX I(X; Y), where the maxi-
mization is over input probability distributions, and the
mutual information I(X; Y) = H(X) + H(Y) − H(XY)
quantifies the correlations between channel input and
output in terms of the Shannon entropy H(·) [1]. This
is shown in several steps: First, a random-coding ar-
gument shows that C(1)(N ) is an achievable commu-
nication rate, so, C(N ) ≥ C(1)(N ), and C(N ) ≥
limn→∞(1/n)C(1)(N⊗n). Second, Fano’s inequality [2]
is used to show that C(N ) ≤ limn→∞(1/n)C(1)(N⊗n),
so C(N ) = limn→∞(1/n)C(1)(N⊗n). This establishes a
multi-letter formula (also called a regularized formula).
Third, additivity C(1)(N⊗n) = nC(1)(N ) is proved to
establish the single-letter formula C(N ) = C(1)(N ).

Formulas for quantum capacities can be found in a
similar way, but for the quantities that are achieved via
random coding, additivity in the third step above typ-
ically fails. This is fantastic—it means we can achieve

higher communication rates than one might naively
expect. These rates can be achieved by using error-
correcting codes that have more structure than ran-
dom ensembles. For example, the nonadditivity of the
Holevo information χ shows that entangled signal states
can boost the classical capacity of a quantum channel
[3], while the nonadditivity of coherent information Ic
(defined in (2)) shows that structured codes can also
boost the quantum communication rate over very noisy
channels [4]. In the same way, the private information
Ip of a quantum channel (defined in (4)) can be non-
additive, in which case the rate of private information
transmission is again enhanced by considering struc-
tured private codes [5]. Quantum information trans-
mission is necessarily private, and hence the private ca-
pacity is no less than the quantum capacity. However,
there are channels showing a strict separation between
the two capacities [6, 7]. This property is partly related
to nonadditivity issues, as for certain channels with ad-
ditive coherent and private information such a separa-
tion is not possible [8, 9].

The benefits of quantum channels mentioned above
also come with frustrations: nonadditivity effects mean
that with current techniques, only multi-letter capacity
formulas are available for quantum channels. Because
these formulas take the form of an optimization over an
infinite number of variables, at the moment we have no
effective way to evaluate the capacities of a noisy quan-
tum channel.

The main result of this paper is the discovery of a re-
markably simple family of quantum channels that dis-
play the nonadditivity that makes understanding quan-
tum capacities such a challenge. Dephrasure channels,
defined below, have nonadditive coherent information
that substantially pushes the threshold for non-zero
quantum capacity. Compared to previous results for
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the depolarizing channel, the nonadditivity of coherent
information observed is much larger than seen before.
Perhaps more importantly, our analysis is much sim-
pler than previous work; this allows for a clearer under-
standing of the effect. Moreover, these dephrasure chan-
nels show a strict separation between the coherent infor-
mation and the private information, strongly suggest-
ing that the respective capacities are strictly separated
as well. Because of its simple structure and amenabil-
ity to analysis, we anticipate that the dephrasure chan-
nel will become a laboratory for testing new ideas about
nonadditivity and quantum channel capacities.

Quantum and private capacity. In quantum informa-
tion theory, point-to-point communication between a
sender and a receiver is modeled by a quantum chan-
nel N : A → B, a linear, completely positive, trace-
preserving map between the algebras of linear opera-
tors of two Hilbert spacesHA andHB. The quantum ca-
pacity Q(N ) of a quantum channel N is defined as the
highest rate at which quantum information can be faith-
fully transmitted through N (see [10] for an operational
definition).

We have the following coding theorem for the quan-
tum capacity [11–15]:

Q(N ) = lim
n→∞

1
n

Ic(N⊗n) = sup
n∈N

1
n

Ic(N⊗n), (1)

where the channel coherent information is defined as

Ic(N ) := maxρ Ic(ρ,N ),
with Ic(ρ,N ) := S(N (ρ))− S(N c(ρ)), (2)

and S(ρ) := − tr ρ log ρ is the von Neumann entropy of a
state ρ (all logarithms in this paper are taken to base 2).
In (2), N c : A → E denotes a complementary channel
of N , obtained by considering an isometric extension
V : HA → HB ⊗HE of N satisfying N (ρ) = trE(VρV†)
[16], and setting N c(ρ) := trB(VρV†).

The optimization in (1) over an (in principle) un-
bounded number of channel uses n renders the quan-
tum capacity intractable to compute in most cases. At
the heart of this intractability lies the fact that the co-
herent information Ic(N ) can be superadditive: there are
channels N and n ∈ N such that Ic(N⊗n) > nIc(N ).
A notable example is the qubit depolarizing channel
Dq : ρ 7→ (1 − q)ρ + q 1

21. For q ∈ [0.2518, 0.255], it
is known that Ic(ρn,D⊗n

q ) > nIc(Dq) for certain input
states ρn and appropriately chosen n ≥ 3 [4, 17, 18].
Moreover, Ic(Dq) = 0 for q ≥ 0.2524, such that in the in-
terval q ∈ [0.2524, 0.255] the superadditivity holds in its
“extreme form”. There are even more exotic examples of
quantum channels exhibiting superadditivity: for any
given n0 ∈ N, there exists a channel Nn0 such that
Ic(N⊗n

n0
) = 0 for all n ≤ n0, but the channel still has

capacity, Q(Nn0) > 0 [19].

The private capacity P(N ) of a quantum channel N
quantifies the optimal rate of transmitting classical data
with vanishing probability of error such that the joint
environment state of all channel uses has vanishing de-
pendence on the input. The private capacity can be ex-
pressed as follows [15, 20]:

P(N ) = lim
n→∞

1
n

Ip(N⊗n) = sup
n∈N

1
n

Ip(N⊗n), (3)

where the private information is defined as

Ip(N ) := max
E

Ip(E,N ), (4)

with the maximization over quantum state ensembles
E = {px, ρx}, and with

Ip(E,N ) := I(X; B)I⊗N (ρ) − I(X; E)I⊗N c(ρ). (5)

The mutual information of a bipartite state σAB is de-
fined as I(A; B)σ = S(A)σ + S(B)σ − S(AB)σ, and eval-
uated in (5) on the classical-quantum states I ⊗N (ρXA)
and I ⊗ N c(ρXA), where ρXA = ∑x px|x〉〈x| ⊗ ρx.
Quantum information transmission is necessarily pri-
vate, and hence P(N ) ≥ Q(N ) for all N . This is also
true for the single-letter quantities, Ip(N ) ≥ Ic(N ).

The private capacity exhibits similarly exotic behavior
as the quantum capacity, since the private information
defined in (4) is not additive [5, 21, 22]. Furthermore,
there are channels with a large separation of coherent
information and private information [7].

While the general situation is poorly understood,
there are special classes of channels for which the quan-
tum and private capacities can be evaluated. A channel
N : A → B with complementary channel N c : A → E is
called degradable, if there is another channel D : B → E
such that N c = D ◦ N . Degradable channels have
additive channel coherent and private informations,
Ic(N⊗n) = nIc(N ) and Ip(N⊗n) = nIp(N ) for all
n ∈ N, and furthermore they are equal to each other,
giving P(N ) = Q(N ) = Ic(N ) = Ip(N ) for this class
of channels [8, 23]. On the other hand, a channel is called
antidegradable, if there exists a channel A : E → B such
that N = A ◦ N c. Due to data processing, antidegrad-
able channels have vanishing channel coherent and pri-
vate information, and hence Q(N ) = 0 = P(N ) for
antidegradable channels.

Generalizing these observations, Watanabe [9]
showed that Q(N ) = P(N ) if the complementary chan-
nel N c has vanishing quantum capacity. If furthermore
P(N c) = 0, then all information quantities above are
additive, and Ic(N ) = Ip(N ) = Q(N ) = P(N ) [9]. In
similar spirit, [24] showed that additivity of coherent in-
formation holds for the class of informationally degradable
channels, which includes all degradable channels [24].
Moreover, building on the results in [25], we showed in
[26] that for a low-noise channel N that is ε-close to the
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identity channel in diamond distance, both its quantum
and private capacities are within O(ε3/2 log ε) of the
channel coherent information, limiting the effect of
superadditivity for such channels.

Recently, an upper bound on the quantum capacity
of a general quantum channel N was derived based on
a convex decomposition of N into degradable and an-
tidegradable maps [27]. In the special case of a flagged
channel

N = (1− λ)D ⊗ |0〉〈0|+ λA⊗ |1〉〈1| (6)

with λ ∈ [0, 1], D degradable andA antidegradable, op-
timality of the bound reported in [27] seems intimately
connected with whether channels of the form (6) can ex-
hibit superadditivity of coherent information. This led
us to consider the family of dephrasure channels, which
we introduce next.

Dephrasure channel. The channel we consider in this
paper is composed of dephasing noise followed by era-
sure, and simply called dephrasure channel. For two prob-
abilities p, q ∈ [0, 1], it is defined as

Np, q(ρ) := (1− q)((1− p)ρ + pZρZ) + q tr(ρ)|e〉〈e|,
(7)

where Z = |0〉〈0| − |1〉〈1| is the Pauli Z-operator, and
|e〉 is an erasure flag orthogonal to the input space.
It is not difficult to see that the dephasing channel
Zp : ρ 7→ (1 − p)ρ + pZρZ is degradable for any p ∈
[0, 1]. Furthermore, the map ρ 7→ tr(ρ)|e〉〈e| is triv-
ially antidegradable. Since 〈e|ρ|e〉 = 0 for all qubit in-
put states ρ, we can without loss of generality write
Np, q = (1− q)Zp ⊗ |0〉〈0| + tr(·)|e〉〈e| ⊗ |1〉〈1|, which
shows that the dephrasure channel is a flagged channel
of the form in (6).

In the following sections, we analyze the quantum
information transmission capabilities of the dephrasure
channel. Without loss of generality, we restrict the dis-
cussion to p, q ∈ [0, 1/2]. Detailed derivations to all re-
sults presented in the sequel can be found in [10].

Antidegradability. The dephrasure channel Np, q is
degradable only if q = 0 or if p = 0 and q ≤ 1/2.
For q ≥ 1/2 the channel is trivially antidegradable due
to the antidegradability of the erasure channel ρ 7→
(1− q)ρ + q tr(ρ)|e〉〈e| in this range. Furthermore, there
is a non-trivial region in the (p, q)-plane in which Np, q
is antidegradable. To determine this region, we consider
the following choice of complementary channel:

N c
p, q(ρ) := q ρ⊕ (1− q) ∑

x=0, 1
〈x|ρ|x〉|φx

p〉〈φx
p|, (8)

where |φx
p〉 =

√
1− p |0〉+ (−1)x√p |1〉. Making use of

unambiguous measurement schemes [28–30], the origi-
nal channel Np, q can be recovered from N c

p, q (viz. N c
p, q

can be degraded to Np, q) in the region

A := {(p, q) : p ∈ [0, 1/2], q ≥ k(p)}, (9)

k(p) :=
1− 2p

2(1− p)
. (10)

We refer to [10] for details of this calculation.
Single-letter coherent information. In order to analyze

nonadditivity properties of the dephrasure channel, we
first derive a formula for the single-letter coherent infor-
mation Ic(Np, q) defined in (2).

The dephrasure channel is defined in terms of a Z-
dephasing, and therefore one could expect that the
coherent information Ic(ρ,Np, q) in (2) is maximized
by states ρz = (0, 0, z) that are diagonal in the Z-
eigenbasis and hence invariant under Z-dephasing. In-
deed, ordinary calculus shows [10] that Ic(Np, q) =
maxρz Ic(ρz,Np, q) in the region

R1 := {(p, q) : p ∈ [0, 1/2], 0 ≤ q < g(p)} , (11)

g(p) :=
(1− 2p)2

1 + (1− 2p)2 . (12)

Numerics show that R1 also includes the region where
Ic(Np, q) ≥ 0 [10, Fig. 5].

For states ρz = (0, 0, z) we have the explicit formula

Ic(ρz,Np, q) = (1− 2q)S(ρz)− (1− q)S(Φp,z) (13)

with

Φp, z =

(
1−p z

√
p(1−p)

z
√

p(1−p) p

)
.

The formula (13) has a maximum at z = 0 in the region

R2 := {(p, q) : p ∈ [0, 1/2], 0 ≤ q < j(p)} (14)

j(p) :=
1− 2p− 2p(1− p) ln 1−p

p

2− 2p− 2p(1− p) ln 1−p
p

, (15)

that is, in this region the completely mixed state π = 1
21

maximizes the coherent information, which evaluates to
Ic(Np, q) = Ic(π,Np, q) = 1− 2q− (1− q)h(p).

To sum up, in the region R1 defined in (11) the
coherent information Ic(Np, q) is maximized by states
diagonal in the Z eigenbasis. In the subregion
R2 ⊆ R1 defined in (14), the coherent informa-
tion Ic(Np, q) is maximized by the completely mixed
state π, and evaluates to Ic(π,Np, q) = 1 − 2q − (1 −
q)h(p). In the fish-shaped region F := R1 \ R2 =
{(p, q) : p ∈ [0, 1/2], j(p) < q < g(p)} , the coherent in-
formation is maximized by Z-diagonal states with z 6= 0.
Furthermore, the 0-contour line of Ic(Np, q) lies in F [10,
Fig. 5]. Fig. 1 plots the functions g(p), j(p) and k(p) that
bound these regions.

Superadditivity of coherent information. In this section
we show that the dephrasure channel Np, q exhibits su-
peradditivity of the coherent information within the re-
gion F : there are (p, q) ∈ F for which Ic(N⊗n

p, q ) >

nIc(Np, q). This also holds in the ‘extreme’ form that
there are (p, q) for which 1

n Ic(N⊗n
p, q ) > Ic(Np, q) = 0.
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FIG. 1. Heat map of the quantity maxλ
1
2 Ic(ρ2,N⊗2

p, q) −
Ic(Np, q). The repetition code ρ2 is defined in (16). The func-
tions g(p) (green) and j(p) (red) are defined in (12) and (15),
respectively. The function k(p) (orange) defined in (10) bounds
the region A of antidegradability of Np, q defined in (9).

We first demonstrate superadditivity of Ic(Np, q) us-
ing a simple (weighted) n-repetition code

ρn := λ|0〉〈0|⊗n + (1− λ)|1〉〈1|⊗n, (16)

where λ ∈ [0, 1]. Observe that

Ic(ρn,N⊗n
p, q ) = S

(
N⊗n

p, q (ρn)
)
− S

(
N⊗n

p, q (φn)
)

, (17)

where in the second term, the output entropy of the
complementary channel in (2) is rephrased in terms of
the entropy of the purification of ρn, φn ≡ |φn〉〈φn| with
|φn〉 :=

√
λ|0〉⊗n+1 +

√
1− λ|1〉⊗n+1, and N⊗n

p, q acts on
all but the first (purifying) system of φn.

The expression (17) is independent of the particular
purification of ρn. To evaluate it, note that N⊗n

p, q is a
sum of channels involving i erasures and n− i dephas-
ing errors for i = 0, . . . , n. Any two erasure patterns
differing in at least one position yield orthogonal out-
put states, and hence (17) splits up into a sum over the
different erasure patterns. Moreover, for a fixed erasure
pattern with 1 ≤ i ≤ n − 1 erasures the two entropy
terms on the right-hand side of (17) yield the same value
h(λ) := −λ log λ − (1 − λ) log(1 − λ), the binary en-
tropy of λ. Hence, we only need to evaluate (17) in the
cases of n dephasing erorrs and n erasures. Our calcula-
tion in [10] yields

Ic(ρn,N⊗n
p, q ) = ((1− q)n − qn) h(λ)

−(1− q)n
(

1− u
2

log
1 + u
1− u

− 1
2

log
(

1− u2
))

, (18)
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FIG. 2. Plot of the coherent information Ic(·,N⊗n
p, 3p)/n in

the interval p ∈ [0.107, 0.118] for the repetition code ρn for
n = 1, . . . , 5 defined in (16) (solid lines), the generalized Z-
diagonal code θ4 defined in eq. (36) in [10] for k = 4 (dashed
line), and the non-diagonal code χ3 defined in eq. (37) in [10]
(dash-dotted lines). The zero line is plotted as a dashed gray
line for reference. The inset plot shows the repetition codes
ρn in the interval p ∈ [0.118, 0.1202], showing that repetition
codes increase the threshold of the dephrasure channel.

for u = u(λ, p, n) =
√

1− 4λ(1− λ)(1− (1− 2p)2n).
The formula (18) provides examples of superadditiv-

ity of the coherent information of Np, q. This is demon-
strated in Fig. 1, where we plot a heat map of the
quantity maxλ

1
2 Ic(ρ2,N⊗2

p, q)− Ic(Np, q). The region with
the largest values of this quantity is colored in purple
in Fig. 1, and crossed by the (p, 3p)-diagonal (dashed
line). We therefore further investigate the optimized
coherent information of the repetition code (16) along
this diagonal for n = 1, . . . , 5 [31]. In Fig. 2, we
plot maxλ Ic(ρn,N⊗n

p, 3p)/n for 1 ≤ n ≤ 5 in the in-
tervals p ∈ [0.107, 0.118] and p ∈ [0.118, 0.1202]. In
the latter interval, there are examples of the extreme
form of superadditivity of the coherent information, i.e.,
1
n maxλ Ic(ρn,N⊗n

p, 3p) > Ic(Np, 3p) = 0, increasing the
threshold of the dephrasure channel in this regime.

We were also able to find codes that outperform the
weighted repetition code (16). These include more gen-
eral Z-diagonal codes (such as θ4 in Fig. 2, defined in
eq. (36) in [10]), as well as certain non-diagonal codes
(such as χ3 in Fig. 2, defined in eq. (37) in [10]). Fur-
thermore, other interesting non-diagonal codes can be
found using a neural network state ansatz [32].
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maxλ Ip(Eλ,Np, 3p)

FIG. 3. Plot of the optimal single-letter coherent information
Ic(Np, 3p) for p ∈ [0.08, 0.125] (blue), and a lower bound to
the single-letter private information, maxλ Ip(Eλ,Np, 3p) (red),
where the private code Eλ is defined in (19).

Separation of private information and coherent informa-
tion. Finally, we investigate the capabilities of private
information transmission of the dephrasure channel.
Numerical investigations suggest [10] that the follow-
ing ensemble Eλ = {p1, ρ1; p2, ρ2}maximizes the single-
letter private information Ip(Np, 3p):

p1 =
1
2

, ρ1 = λ|+〉〈+|+ (1− λ)|−〉〈−|

p2 =
1
2

, ρ2 = (1− λ)|+〉〈+|+ λ|−〉〈−|, (19)

where λ ∈ [0, 1] and |±〉 = (|0〉 ± |1〉)/
√

2. This pri-
vate code shows a strict separation between Ic(Np, 3p)
and Ip(Np, 3p) in the interval p ∈ [0.08, 0.125], plotted in
Fig. 3. We note that the private information remains pos-
itive up to p ' 0.12145, which is exactly where the diag-
onal (p, 3p) meets the curve g(p) defined in (12). Inter-
estingly, the latter marks the border where Z-diagonal
codes optimize the single-letter coherent information.

It is an interesting open question whether the dephra-
sure channel also exhibits superadditivity of private in-
formation. However, to demonstrate this effect one first
needs to determine the optimal single-letter private in-
formation. We conjecture the private code in (19) to be
optimal for the dephrasure channel Np, 3p.

Finally, we note that the complementary channelN c
p, q

has positive coherent information for all p, q ∈ (0, 1/2]
(see [10]), which implies that P(N c

p, q) ≥ Q(N c
p, q) > 0

for all p, q ∈ (0, 1/2]. Similarly as for the depolarizing
channel [33], this indicates that Watanabe’s results [9]
cannot be applied to the dephrasure channel.
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