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The fundamental study of phase transition kinetics has motivated experimental methods toward
achieving the largest degree of undercooling possible, more recently culminating in the technique of
rapid, quasi-isentropic compression. This approach has been demonstrated to freeze water into the
high-pressure ice VII phase on nanosecond time scales, with some experiments undergoing hetero-
geneous nucleation while others, in apparent contradiction, suggesting a homogeneous nucleation
mode. In this study, we show through a combination of theory, simulation, and analysis of experi-
ments that these seemingly contradictory results are in agreement when viewed from the perspective
of classical nucleation theory. We find that, perhaps surprisingly, classical nucleation theory is capa-
ble of accurately predicting the solidification kinetics of ice VII formation under an extremely high
driving force (|∆µ/kBT | ≈ 1), but only if amended by two important considerations: 1) transient
nucleation and 2) separate liquid and solid temperatures. This is the first demonstration of a model
that is able to reproduce the experimentally observed rapid freezing kinetics.

First-order phase transitions and their kinetics re-
main a fascinating topic with applications to vir-
tually every major industry and to frontier fields
like astronomy and inertial confinement fusion [1].
Despite its significance, many aspects of this topic
are still largely unexplored, even for a fundamen-
tally important substance like water at ambient pres-
sure [2–4]. At this low pressure, it is difficult to
deeply undercool liquid water [5, 6], and so the driv-
ing force for freezing is rather limited in magnitude.
In contrast, water becomes deeply undercooled (by
up to 150 degrees; see Figure 1) and remains as
a metastable liquid for less than a microsecond in
dynamic compression experiments performed over
the past two decades where it is rapidly compressed
along a quasi-isentrope to pressures above 1 GPa [7–
14]. Some of these experiments have achieved peak
pressures of above 6 GPa [10, 11, 13], and their con-
clusion is that water freezes almost instantaneously
— within a few tens of nanoseconds — if it gets over-
driven to this point along the quasi-isentrope. For
this reason, the 6–7 GPa range is said to represent
a metastability limit for the liquid.

The dynamic compression experiments have em-
ployed one of two techniques (see our review pa-
per [18]): multiple-shock or ramp compression. In
both techniques, a thin water sample sandwiched
between two thicker solid windows is compressed
from ambient conditions along the quasi-isentrope
into the ice VII region of the phase diagram (Fig-

ure 1). Ice VII is a cubic high-pressure solid phase
discovered over 80 years ago [19] that may be present
in oceanic super-Earths [16, 17] and even in the
Earth’s mantle [20]. No theoretical model devel-
oped to date has been able to reproduce the rapid
(sub-microsecond) liquid/ice VII transition kinetics
observed in any of the experiments [18].

In this study, we show how a computational
framework that couples classical nucleation theory
(CNT) [21–26] and growth with hydrodynamic sim-
ulations can reproduce the transition kinetics ob-
served in experiments where water freezes to comple-
tion rapidly at the metastability limit. We first ap-
ply CNT to explain past experimental observations
which indicate that freezing at this limit occurs pri-
marily through homogeneous nucleation. We then
show that in order for simulations to reproduce ex-
perimental data, one must account for the fact that
water under extreme conditions freezes into ice VII
via transient nucleation and with essentially no ther-
mal boundary layer at the solid/liquid interface.

The dynamic compression experiments can be di-
vided into two categories, depending on the peak
pressure achieved in the setup and the window ma-
terial. It has been reported that if the peak pres-
sure is around 5 GPa or less, freezing occurs over
hundreds of nanoseconds, but only if the windows
are made of silica and not sapphire [7–9, 12, 13].
Freezing does not occur at all on sub-microsecond
time scales with sapphire windows. This material-
dependent behavior suggests that at pressures of
less than around 5 GPa, freezing occurs primarily



FIG. 1. Representative experimental setup for multiple-
shock compression and the phase diagram for water su-
perimposed on an illustration of a hypothetical oceanic
exoplanet. The quasi-isentropic loading path before the
onset of freezing to ice VII may be approximated by the
liquid principal isentrope. Ice VII has a body-centered
cubic (BCC) lattice of oxygen. All the curves in the
phase diagram are produced from our equation of state
(EOS) for the two water phases [15]. Unlike single-shock
compression (where the relevant curve is the Hugoniot),
quasi-isentropic compression can probe deeply under-
cooled states since the temperature rise along its loading
path is far more attenuated. The two-phase isentropes
for the oceanic super-Earths Gliese 581d (GJ 581d) and
Gliese 1214b (GJ 1214b) are initiated at surface temper-
atures of 340 K and 400 K, respectively, which are rough
estimates taken from [16] and [17].

through heterogeneous nucleation of ice VII along
the window surfaces. On the other hand, if the
peak pressure goes beyond the metastability limit
of 6–7 GPa, freezing achieves completion within just
a few tens of nanoseconds, and it does so regard-
less of the window material (i.e., even with sapphire
windows) [10, 11, 13]. This material-independent
behavior suggests that freezing at these deeply un-
dercooled conditions is dominated by homogeneous
nucleation within the bulk of the water.
These results can be understood from the perspec-

tive of CNT. According to CNT [21–26], the steady-
state homogeneous nucleation rate Jst

homo is given by

Jst
homo = Bhomo exp

(
−∆G∗homo
kBT

)
, (1)

where Bhomo is a pre-exponential factor that re-
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FIG. 2. (a) Ratio of exponential and pre-exponential
factors for heterogeneous vs. homogeneous nucleation as
a function of contact angle θ for three different pres-
sures along the isentrope in Figure 1; (b) Comparison
of the time evolution of the ice VII phase fraction φ for
these pressures, with inset showing the behavior at early
times. Freezing occurs primarily via homogeneous (het-
erogeneous) nucleation at higher (lower) pressures.

flects the number of available nucleation sites,
∆G∗homo is the nucleation energy barrier, kB is
the Boltzmann constant, and T is the tempera-
ture [18]. Details regarding quantities like Bhomo
and ∆G∗homo are summarized in the Supplemen-
tal Material (SM). The heterogeneous nucleation
rate Jst

hetero may be analogously defined as Jst
hetero =

Bhetero exp (−∆G∗hetero/kBT ), in which ∆G∗hetero is
related to ∆G∗homo through the effective contact an-
gle θ that ice clusters form on the water/window
surface. While the detailed molecular basis for het-
erogeneous nucleation in this system is currently un-
known, the concept of a contact angle provides an
effective barrier reduction mechanism that enables
analysis of the experimental results without the need
to postulate specific atomistic processes.

Figure 2(a) shows that the exponential term over-
whelmingly favors Jst

hetero, especially at smaller val-
ues of θ which are indicative of better “wetting” of
the window surfaces by ice than by water, but this
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bias towards Jst
hetero decreases significantly at higher

pressures. In contrast, the ratio Bhetero/Bhomo is
relatively insensitive to the pressure and greatly fa-
vors Jst

homo since there are far more nucleation sites
(i.e., water molecules) in the three-dimensional bulk
of the water than along the two-dimensional win-
dow surfaces. Thus, at some sufficiently high pres-
sure, perhaps near the metastability limit, there
is a crossover where Jst

homo becomes larger than
Jst

hetero. These arguments can be further under-
stood by examining the time evolution of the ice VII
phase fraction φ [Figure 2(b)]. The time deriva-
tive ∂φ/∂t due to homogeneous nucleation is given
by the Kolmogorov-Johnson-Mehl-Avrami (KJMA)
equation [27–31] presented in Equation (6) below.
At 7 GPa, the homogeneous nucleation rate is so
overwhelming that the distance between the neigh-
boring crystals is small and complete solidification
is achieved after roughly 10 ns. In contrast, the so-
lidification front in heterogeneous nucleation has to,
regardless of the pressure, travel the thickness of the
entire water sample, which is a much longer distance.
Thus, even if we assume instantaneous saturation
of the two water/window surfaces of the setup, the
upper-bound limit on φhetero is φhetero = 2γt/`,
where γ is the cluster growth rate (see Equation (2)
below) and ` = 0.01 cm is a representative thickness.
The CNT-based analysis underlying the results

in Figure 2 seems promising in that it explains
the major experimental finding that homogeneous
(heterogeneous) nucleation is dominant at higher
(lower) pressures. But in order to pursue a quanti-
tative comparison with data from the experiments,
a computational framework that includes coupling
between CNT and hydrodynamics is required. In
what follows, we describe how such a framework
yields quantitative agreement with observed pres-
sure wave profiles from all experiments conducted to
date where the peak pressure exceeds the 6–7 GPa
metastability limit so that homogeneous nucleation
dominates. Two self-consistent features must be in-
cluded to account for the deeply undercooled states
present in the experiments: 1) a dual-temperature
model for the liquid and ice VII phases and 2) re-
laxing the assumption of steady-state nucleation.
To clarify why the liquid and solid phases exist at

two distinct temperatures, we note that at 7 GPa the
undercooling of the liquid ∆TU ≈ 150 K (Figure 1)
and the latent heating by solidification is ∆TQ =
∆H/Cp ≈ 100 K [see Figure 3(b)], where ∆H is the
enthalpy of fusion and Cp is the liquid isobaric heat

capacity. Since ∆TU > ∆TQ, we have the unique
scenario that the vast majority of heat released by
the solidification process is absorbed by the growing
crystal. As a result, the liquid must remain at a
lower temperature than the newly formed ice, close
to what it would be if there were no transition, thus
enhancing the nucleation rate by maintaining the
initial level of undercooling. We refer to this tracking
of separate liquid and ice temperatures as the dual-
temperature model. Furthermore, the growth rate γ
of the clusters may be approximated as [32, 33]

γ =
(
kBT

m

)1/2 ∆µ
kBT

, (2)

where m is the molecular mass and ∆µ = µsolid −
µliquid is the bulk chemical potential difference.
Analysis of the transport properties near the inter-
face reveals that the growth mode is dominated by
attachment kinetics (see the SM) and supports (2)
as a physical description of the interface velocity.

Even at ambient pressure where metastable
phases may last for a relatively long time with rapid
cooling, there may not be sufficient time for steady-
state nucleation to be established [34]. As a result,
a transient nucleation factor [35] must be included
so that the total homogeneous nucleation rate J is

J(t) = (1− φ)I(t)Jst
homo. (3)

The time-dependence of I(t) suppresses nucleation
at early times (I � 1), a phenomena commonly
known as transient nucleation [21–26]. It is therefore
not surprising that in rapid freezing under dynamic
compression — where the effective cooling rate along
the isentrope can exceed an extremely high value of
109 K/s — one must account for I(t) as well. Fol-
lowing Kashchiev [36], we take

I(t) = 1 + 2
∞∑

k=1
(−1)k exp

(
−k2t

τ

)
, (4)

where the induction time τ describes the mean first
passage time for crossing the region of critical cluster
size within kBT of the nucleation energy barrier:

τ = ζ
8kBT

π2λD∗
. (5)

Here, ζ is an adjustable parameter, λ is the curva-
ture at the top of the nucleation barrier, and D∗ is
an attachment rate (see the SM). If we set ζ, which
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is the only free parameter in our model, equal to
unity, Equation (5) reduces to the classical expres-
sion obtained by Kashchiev. Simulations with our
model, applying the transient nucleation theory just
described, are able to quantitatively match the freez-
ing kinetics observed in all of the dynamic compres-
sion experiments we present in both the main text
and in the SM by the assignment of ζ = 55. The
instantaneous value of ∂φ/∂t is given by the KJMA
equation [27–31] mentioned earlier:

∂φ

∂t
= 4π(1− φ)γ(t)

∫ t

0
J(t′)

[∫ t

t′
γ(t′′)dt′′

]2

dt′.

(6)
We solve Equation (6) together with the govern-
ing conservation equations by running the multi-
physics hydrodynamics code Ares [37] coupled with
our phase transition kinetics code Samsa. These
codes and the various material models employed by
them are detailed in the SM.
Before the ramp compression path in the exper-

imental study of Dolan et al. [10] has crossed the
melt curve, the liquid is stable since ∆µ = µsolid −
µliquid > 0 [Figure 3(a)]. This is followed by a pe-
riod of about 50 ns during which the water remains
as a metastable liquid so that ∆µ/kBT , τ , and the
critical cluster size n∗ continue to decrease. Finally,
when the magnitude of the driving force reaches a
sufficiently large value of |∆µ/kBT | ≈ 1, freezing
rapidly goes to completion (φ rises from 0 to 1) in
about 10 ns, which is reflected in the sharp rise and
fall of J . Optical transmission and imaging data
from Dolan et al. also indicate that freezing is com-
pleted within about 10 ns. During the transition, the
pressure decreases (from about 7 GPa to 6.7 GPa),
which is consistent with freezing to the more dense
ice VII phase. It is apparent from Figure 3 that
both transient nucleation and the dual-temperature
model are necessary to properly describe freezing at
these extreme conditions. Our value of ζ = 55 in
Equation (5) results in a τ such that I(t) suppresses
the nucleation rate J to yield good agreement with
Dolan et al. The figure also shows that if we neglect
the fact that the growth rate is faster than the rate
of latent heat transport so that both phases are de-
scribed by a single temperature in which the liquid is
hotter than it would be in reality (and hence, nucle-
ation would be suppressed), then the resulting pres-
sure profile does not match Dolan et al. and freezing
does not achieve completion.
Our CNT-based solidification kinetics framework

also quantitatively reproduces the results of a differ-

ent class of experiments that utilize multiple-shock
compression (Figure 4). The wave profile retains
an idealized ringing structure in the absence of a
transition, but if freezing does occur, there is again
a rapid drop in pressure. Like in ramp compres-
sion, freezing achieves completion in multiple-shock
compression, but it does so over 20-30 ns rather
than ≈ 10 ns like in ramp compression. This is
because the quasi-isentrope in multiple-shock com-
pression attains higher temperatures (lower driving
force) and so is less favorable for freezing. It is worth
noting that in the multiple-shock data illustrated in
Figure 4, there is a significant damping on the ring-
ing immediately following the onset of freezing. This
unknown source of dissipation is not accounted for
by the phase transition kinetics alone and, although
not the focus of our study, we have attempted to
model the damping through a strength model for
ice VII that we describe further in the SM.

Figure 4 also depicts results for an experiment
with sapphire windows where the peak pressure is
only around 5 GPa. Our models correctly pre-
dict that freezing does not occur under these condi-
tions. In contrast, previously published simulations
of these “null result” experiments have artificially
disallowed freezing by removing the ice VII phase
from their EOS (i.e., running liquid-only models),
rather than allowing a model of the kinetics to de-
termine the final state [9, 11–13, 18]. The ability to
reproduce this null result is an important test of our
CNT-based framework, and we show in the SM that
it successfully reproduces similar experiments from
Dolan and Gupta et al. [9] and Stafford et al. [13]

We have explained how a theoretical framework
built on CNT and growth, when combined with
hydrodynamics simulations, provides quantitative
agreement with experimental pressure wave profiles
associated with nanosecond freezing kinetics of liq-
uid water to ice VII via homogeneous nucleation.
This is the first such demonstration of a single, uni-
fied framework that can match the phase transition
kinetics observed in multiple different dynamic com-
pression experiments. Our results suggest new ex-
periments regarding the nature of the metastability
limit: if one were to increase the ramp-compression
loading rate, could liquid water remain beyond 7
GPa? In opposition to this limit is the fact that
faster loading rates also generate more entropy and
thus reduce the driving force; therefore, there may
be an optimal loading rate which can truly achieve
the metastability limit. Such future studies, in-
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formed by the results presented here, will shed light
on the details of nucleation far-from-equilibrium and

experimentally determine the limit where classical
theory breaks down.
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FIG. 3. Our simulation results for the ramp compression experiment of Dolan et al. [10] All of the results correspond
to those from our dual-temperature model unless otherwise indicated. Panel (a) compares the pressure wave profile
for 4 cases: three of which are from our simulations run with different models and the fourth is from Dolan et al. To
aid in understanding, (a) also shows how the driving force ∆µ/kBT , the ice VII phase fraction φ, and the transient
nucleation factor I(t) evolve with time. Panel (b) portrays the temperature in the two phases, (c) illustrates the
induction time τ and number of ice molecules n∗ in critical size clusters, and (d) depicts the nucleation rate J and
growth rate γ, including insets that focus on the behavior near the onset of the transition.
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