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We propose how to create and manipulate one-way nonclassical light via photon blockade in ro-
tating nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically,
we show that in a spinning Kerr resonator, PB happens when the resonator is driven in one direction
but not the other. This occurs because of the Fizeau drag, leading to a full split of the resonance
frequencies of the counter-circulating modes. Different types of purely quantum correlations, such
as single- and two-photon blockades, can emerge in different directions in a well-controlled manner,
and the transition from PB to photon-induced tunneling is revealed as well. Our work opens up a
new route to achieve quantum nonreciprocal devices, which are crucial elements in chiral quantum
technologies or topological photonics.

Nonreciprocal devices, allowing the flow of light from
one side but blocking it from the other, are indispens-
able in a wide range of practical applications, such as
invisible sensing or cloaking, and noise-free information
processing [1]. To avoid the difficulties of conventional
magnet-based devices (e.g., bulky and quite lossy at op-
tical frequencies), nonreciprocal optical devices have been
demonstrated in recent experiments based on nonlinear
optics [2, 3], optomechanics [4–6], atomic gases [7, 8], and
non-Hermitian optics [9–11]. Similar advances have also
been achieved in making acoustic and electronic one-way
devices [12–17]. However, previous studies have mainly
focused on the classical regimes, i.e., one-way control
of transmission rates instead of quantum noises. Non-
reciprocal quantum devices have been explored very re-
cently, including one-way quantum amplifiers [18–24] and
routers of thermal noises [25]. Such devices can find ap-
plications for quantum control of light in chiral and topo-
logical quantum technologies [26–28].

Here we propose how to induce and control nonrecip-
rocal quantum effects with rotating nonlinear devices.
Specifically, we show that photon blockade (PB), which
is a purely quantum effect, can emerge nonreciprocally in
a spinning Kerr resonator. We note that single-photon
blockade (1PB), i.e., blockade of the subsequent photons
by absorbing the first one [29–32], has been demonstrated
experimentally in diverse systems from cavity or circuit
QED [33–40] to cavity-free devices [41]. In view of its im-
portant role in achieving single-photon devices, optome-
chanical PB [42–45] have also been explored, offering a
way to test, e.g., the quantumness of massive objects [46–
50]. In a very recent experiment [51], two-photon block-
ade (2PB) [31, 52–59] has also been observed, opening a
route for creating two-photon devices. Thus, nonrecip-
rocal PB devices, as studied here, together with other
nonreciprocal quantum devices [18–23, 25], are expected

to play a key role in quantum engineering [60–62], metrol-
ogy [63–65], and quantum information processing [66, 67]
at the single- or few-photon levels.

In a very recent experiment [68], an optical diode with
99.6% isolation has been demonstrated by using a spin-
ning resonator. Inspired by this experiment [68], here
we study nonreciprocal PB in a spinning Kerr resonator.
We find that light with sub- or super-Poissonian photon-
number statistics can emerge when driving the resonator
from its left or right side. Also, by varying the parameters
of the system, different quantum correlations (i.e., 1PB or
2PB) can be achieved for the clockwise (CW) or counter-
clockwise (CCW) modes, for a resonator spinning along
the CCW direction. We note that the main idea of non-
reciprocal PB is analogous to the classical nonreciprocity
induced by the Doppler effect, which has been studied ex-
tensively in various areas of physics (see, e.g., [7, 8, 69]).
Here we focus on quantum nonreciprocity induced by the
Fizeau light-dragging effect. This opens up the prospect
of engineering nonreciprocal PB devices for applications
in e.g., unidirectional quantum sensing and quantum op-
tical communications [28].
Model.—We consider a spinning optical Kerr resonator

as shown in Fig. 1. As a generic PB model [30, 32, 53],
Kerr interactions can also be experimentally achieved in
cavity-atom systems [33, 70], or magnon devices [71], and
theoretically in optomechanical systems [42, 43]. For a
resonator spinning at an angular velocity Ω, the light
circulating in the resonator experiences a Fizeau shift,
i.e., ω0 → ω0 + ∆F, with [72]:

∆F = ±nrΩω0

c

(
1− 1

n2
− λ

n

dn

dλ

)
, (1)

where ω0 is the resonance frequency of a non-spinning
resonator, n is the refractive index, r is the resonator
radius, and c (λ) is the speed (wavelength) of light in



2

E E

2ω0

ω0

2U

2U

U

2|ΔF|
2|ΔF|

|ΔF||ΔF|

|0〉

|1〉

|2〉

|0〉

|1〉

|2〉

0

2ω

ω

0

ω

2ω

k = 1.5 k = 1.5

Ω Ω

ξ  ωL ωL  ξ
ω ω

(a) (b)

ω
L

ω
L

|ΔF| = U / 2

1 PB (ΔF > 0) PIT (ΔF < 0)

FIG. 1. Nonreciprocal 1PB in a spinning Kerr resonator.
1PB arises due to the anharmonic spacing of the energy levels
|n〉. Here we take n = 0, 1, 2, and ~ = 1, for simplicity.
By fixing the CCW rotation of the resonator (the angular
speed Ω fulfills the condition ∆F = ±U/2), under the same
driving power Pin = 2 fW and the same detuning ∆L = −U/2,
i.e., k = 1 − ∆L/U = 1.5, (a) 1PB emerges by driving the
device from its left side (∆F > 0), while (b) PIT caused by
two-photon resonance occurs by driving from the right side
(∆F < 0). This PIT exhibits g(µ)(0) > 1 (µ = 2, 3, 4) [73].

vacuum. Usually, the dispersion term dn/dλ, character-
izing the relativistic origin of the Sagnac effect, is rel-
atively small (up to ∼ 1%) [68, 72]. We fix the CCW
rotation of the resonator, hence ∆F > 0 (∆F < 0) corre-
sponds to the situation of driving the resonator from its
left (right) side, i.e., the CW and CCW mode frequencies
are ω�,	 ≡ ω0 ± |∆F|, respectively.

In a frame rotating at driving frequency ωL, the ef-
fective Hamiltonian of the system can be written at the
simplest level as [73]:

Ĥ = ~(∆k + ∆F)â†â+~Uâ†â(â†â−k) +~ξ(â†+ â), (2)

where ∆k = ∆L + U(k − 1), ∆L = ω0 − ωL, the tuning
parameter k is simply k = 1−∆L/U for ∆k = 0, â (â†)
is the annihilation (creation) operator of the cavity field,
and ξ =

√
γPin/(~ωL), with the cavity loss rate γ and

the driving power Pin. The Kerr parameter is [74]: U =
~ω2

0cn2/(n
2
0Veff), where n0 (n2) is the linear (nonlinear)

refraction index, and Veff is the effective mode volume.
The Kerr coupling is also attainable by using other kinds
of devices [33, 42, 43, 70, 71]. Note that the term ∆F

makes Eq. (2) fundamentally different from that used for
studying conventional PB [53].

The energy eigenstates of this system are the Fock
states |n〉 (n = 0, 1, 2, ...) with eigenenergies

En = n~∆L + (n2 − n)~U ± n~|∆F|, (3)

where n is the cavity photon number. The second term,
with U , leads to an anharmonic energy-level structure.
The last term, with ±|∆F|, describing upper or lower
shifts of energy levels with an amount being proportional
to Ω, is the origin of nonreciprocal implementations of
PB. When |∆F| = U/2 and the probe with frequency
ω0 + |∆F| (k = 1.5) comes from the left side, the light is
resonantly coupled to the transition |0〉 → |1〉. As shown
in Fig. 1(a), the transition |1〉 → |2〉 is detuned by 2~U
and, thus, suppressed for U > γ, i.e., once, a photon
is coupled into the resonator, it suppresses the probabil-
ity of the second photon with the same frequency going
into the resonator. In contrast, by driving from the right
side, there is a two-photon resonance with the transition
|0〉 → |2〉, hence the absorption of the first photon fa-
vors also that of the second or subsequent photons, i.e.,
resulting in photon-induced tunneling (PIT), as defined
below and shown in Fig. 1(b). This is a clear signature of
nonreciprocal 1PB, i.e., sub-Poissonian light emerges by
driving the system from one side, while super-Poissonian
light emerges by driving from the other side.

Analytical results.—To confirm this intuitive picture,
we study the µth-order (µ = 2, 3) correlation function
with zero-time delay, i.e., g(µ)(0) ≡ 〈â†µâµ〉/〈n̂〉µ, with
n̂ = â†â. The condition g(2)(0) > 1 [g(2)(0) < 1] char-
acterizes PIT [34, 75] (1PB) via super-Poissonian (sub-
Poissonian) photon-number statistics or photon bunch-
ing (antibunching) [76, 77]. The latter terms can also
refer to different (i.e., two-time) optical correlation ef-
fects [77, 78], which are, however, not studied here. We
stress that, although PIT has a classical-like property of
super-Poissonian photon-number statistics [75, 79, 80], it
is a purely quantum effect [34]. The analysis of higher-
order correlation functions g(µ)(0) > 1 with µ > 2 can
reveal the relation of a particular PIT and multi-PB [73].
Thus, more refined criteria for PIT are sometimes ap-
plied [50, 79, 81], and we refer here to PIT if the con-
ditions g(µ)(0) > 1 for µ = 2, 3, 4 are satisfied [73]. We
also note that partially coherent mixtures of the vacuum,
and single- and multi-photon states, as generated here,
can be described by µth-order super-Poissonian correla-
tions, i.e., g(µ)(0) > 1, for specific values of µ [82]. Par-
ticularly, g(3)(0) < 1 [g(3)(0) > 1] is a signature of third-
order sub-Poissonian (super-Poissonian) statistics, which
is also interpreted as three-photon antibunching (bunch-
ing) in recent experiments on multi-PB [51] and PIT [81].
Thus, g(3)(0), which is usually measured with extended
Hanbury Brown-Twiss interferometers, provides a more
refined test and classification of the nonclassical character
of light, including 2PB (as studied below) or unconven-
tional PB [83].

According to the quantum-trajectory method [84], the
optical decay can be included in the effective Hamiltonian
Ĥs = Ĥ − (i~γ/2)â†â, where γ = ω0/Q is the cavity
dissipation rate and Q is the quality factor. In the weak-
driving regime (ξ � γ), by truncating the Hilbert space
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FIG. 2. The second-order correlation function g(2)(0) versus
the tuning parameter k for different input directions. At k =
1.5, 1PB (red curve) or PIT (blue curve) occurs by driving
the device from the left or right side, with the same strength.
Here Pin = 2 fW, Ω = 29 kHz for the spinning resonator, and

g
(2)
0 (0) corresponds to a non-spinning resonator (green). Note

that Ω is related to ∆F by Eq. (1). For the other parameter
values, see the main text. On the scale of this figure, there
are no differences between our numerical and (approximate)
analytical results [73].

to n = 2, the state of this system is written as |ϕ(t)〉 =∑2
n=0 Cn(t)|n〉, with probability amplitudes Cn. Then

we have the following equations of motion

Ċ0(t) = −iν0C0(t)− iξC1(t),

Ċ1(t) = −i(ν1 − i
γ

2
)C1(t)− iξC0(t)− iξ

√
2C2(t), (4)

Ċ2(t) = −i(ν2 − iγ)C2(t)− iξ
√

2C1(t),

with ~νn = En, C0(0) = 1, C1(0) = C2(0) = 0. Solving
these equations (and dropping higher-order terms) leads
to the steady-state solutions

C1(∞) =
−ξ

(ν1 − ν0 − iγ2 )
, C2(∞) =

−
√

2ξC1(∞)

(ν2 − ν0 − iγ)
.

(5)
Denoting the probability of finding m photons in the

resonator by P (m) = |Cm|2, we have

g(2)(0) =
2P2

(P1 + 2P2)2
' (∆L + ∆F)2 + γ2/4

(∆L + ∆F + U)2 + γ2/4
. (6)

1PB and PIT correspond to the minimum and the maxi-

mum of g(2)(0), respectively, i.e., when U > γ, g
(2)
min(0) =

1/[4(U/γ)2 + 1] < 1 for ∆L = −∆F, and g
(2)
max(0) =

4(U/γ)2 + 1 > 1 for ∆L = −∆F − U .
Numerical results.—In order to confirm our analytical

results, now we numerically study the full quantum dy-
namics of the system. We introduce the density operator
ρ̂(t) and then solve the master equation [85, 86]:

˙̂ρ =
i

~
[ρ̂, Ĥ] +

γ

2
(2âρ̂â† − â†âρ̂− ρ̂â†â). (7)

The photon-number probability P (n) = 〈n|ρ̂ss|n〉 can be
obtained for the steady-state solutions ρ̂ss of the mas-
ter equation. The experimentally accessible parameters
are chosen as [87–91]: Veff = 150µm3, Q = 5 × 109,
n2 = 3× 10−14 m2/W, n0 = 1.4, Pin = 2 fW, r = 30µm,
and λ = 1550 nm. Veff is typically 102–104 µm3 [87, 88],
Q is typically 109–1012 [89, 90], and g(2)(0) as low as
∼ 0.13 was achieved experimentally [33]. Moreover, in
Fig. 2, we set Ω = 29 kHz; a similar property of quan-
tum nonreciprocity is also confirmed for Ω = 6.6 kHz
(see the Supplemental Material [73]). These values of
Ω are experimentally feasible [68]. Very recently, spin-
ning objects have reached much higher velocities, reach-
ing the GHz regime [92, 93]; such systems could also be
applied to study the nonreciprocal PB via Kerr-like op-
tomechanical interactions [94, 95]. We note that the Kerr
coefficient can be n2 ∼ 10−14 m2/W for materials with
potassium titanyl phosphate [91], and n2 can be further
enhanced with various techniques [96–101], e.g., feedback
control [100, 101] or quadrature squeezing [98, 99].

An excellent agreement between our analytical results
and the exact numerical results is seen in Fig. 2. Here we

use g
(2)
0 (0), g

(2)
� (0), and g

(2)
	 (0) to denote the cases with

∆F = 0, ∆F > 0, and ∆F < 0, respectively. For a non-
spinning resonator, regardless of the driving direction,

g
(2)
0 (0) always has a dip at k = 1 (i.e., ∆L = 0) or a

peak at k = 2 (i.e., ∆L = −U), corresponding to 1PB
or PIT, respectively. In contrast, for a spinning device,
by driving from the left (right) side, we have ∆F > 0
(∆F < 0) and, thus, a red (blue) shift for g(2)(0), leads to

1PB (PIT) at k = 1.5, i.e., g
(2)
� (0) ∼ 0.001, g

(2)
	 (0) ∼ 673.

This quantum nonreciprocity, with up to six orders of
magnitude difference of g(2)(0) for opposite directions, is
fundamentally different from the classical transmission-
rate nonreciprocity.
Nonreciprocal 2PB.—The absorption of 2 photons can

also suppress the absorption of additional photons [53].
This 2PB effect, featuring three-photon antibunching,
but with two-photon bunching, satisfies [51, 73]:

g(3)(0) < f ≡ e−〈n̂〉, g(2)(0) ≥ f (2) ≡ e−〈n̂〉+〈n̂〉·g(3)(0).
(8)

The third-order correlation function can be obtained an-
alytically as [73]:

g(3)(0) =
6P3

(P1 + 2P2 + 3P3)3
' (∆2 + γ2/4)g(2)(0)

(∆ + 2U)2 + γ2/4
,

(9)
with ∆ = ∆L + ∆F, also agreeing well with the numeri-
cal results. Figures 3(a) and 3(b) show that 2PB emerges
around k = 2.5 by driving from the left side, while we

have PIT by driving from the right side, i.e., g
(2)
	 (0) ∼ 36,

g
(3)
	 (0) ∼ 1003. By tuning the driving frequency to the

three-photon resonance [see Fig. 3(d)], it is indeed pos-
sible to observe that g(3)(0)/g(2)(0) ∼ 100, as shown in
Fig. 3(a) for max〈n〉 = 0.0185. This means that the prob-
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FIG. 3. (a) The correlation functions g(3)(0) (solid curves)

and g(2)(0) (dashed curves) versus the tuning parameter k for
different driving directions. Note that at k = 2.5, 2PB can
emerge by driving the system from the left side (orange), while
PIT occurs by driving from the right side (blue). In (b), 2PB
is confirmed by the criteria given in Eq. (8) for the CW mode.
(c) This nonreciprocal 2PB can also be recognized from the
deviations of the photon distribution to the standard Poisson
distribution with the same mean photon number. (d) The
energy-level diagram shows the origin of this unidirectional
2PB: with enhanced driving power Pin = 0.3 pW, by choosing
∆L = −3U/2 (i.e., k = 2.5), 2PB emerges by driving the
device from the left (∆F > 0), while three-photon resonance-
induced PIT emerges by driving from the right side (∆F < 0).
The other parameters are the same as those in Fig. 2.

ability of simultaneously measuring three photons can be
much larger than that of two photons in this situation.
Similar values of g(3)(0) ∼ 103, g(2)(0) ∼ 10 were also
predicted in the PIT analysis in Ref. [81].

Our results can be further confirmed by comparing the
photon-number distribution P (n) with the Poisson dis-
tribution P(n). Figure 3(c) shows that P (2) is enhanced
while P (n > 2) are suppressed by driving from the left
side, which is in sharp contrast to the case when driving
from the right side. This unidirectional 2PB effect can
be intuitively understood by considering the energy-level
structure of the system, as shown in Fig. 3(d). By choos-
ing ∆L = −3U/2 or k = 2.5, the transition |0〉 → |2〉 is
resonantly driven by the left input laser, but the transi-
tion |2〉 → |3〉 is detuned by 4~U , which features the 2PB
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FIG. 4. (a) The correlation functions g(3)(0) (solid curves)

and g(2)(0) (dashed curves) versus the tuning parameter k for
different driving directions. 1PB can emerge around k = 1.5
by driving from the left side (orange), while 2PB occurs by
driving from the right side (blue). In (b), 2PB is confirmed by
the criteria given in Eq. (8) for the CCW mode. (c) This 1PB-
2PB nonreciprocity can also be recognized from the relative
photon population numbers in the resonator. For all plots,
the parameters are the same as those in Fig. 3.

effect; in contrast, by driving from the right side, three-
photon resonance happens for the transition |0〉 → |3〉,
leading to PIT. Hence with such a device, sub-Poissonian
light can be achieved by driving it from the left side, while
super-Poissonian light is observed by driving it from the
right side.
Nonreciprocity of 1PB and 2PB.—Fig. 4 shows that at

k = 1.5, 1PB emerges by driving from the left side, due

to g
(2)
� (0) ∼ 0.045, while 2PB occurs by driving from the

right side since the criteria given in Eq. (8) are fulfilled
for ∆F < 0. This indicates a purely quantum device with
direction-dependent counting statistics, a new nonrecipro-
cal feature, which has not been revealed previously. This
1PB-2PB nonreciprocity, as also clearly seen in Fig. 4(c)
for the populations of different Fock states, provides a
route for creating or processing different quantum states
in a single node of quantum networks [66, 67]. Figures 3–
4 present our solutions of the standard master equation,
given in Eq. (7), which describes both a slow continu-
ous non-unitary evolution and quantum jumps occurring
with a small probability [102]. By contrast, our approx-
imate analytical solutions, based on the complex Hamil-
tonian Hs and the Schrödinger equation, were obtained
by ignoring these quantum jumps following the standard
approach of [103].
Conclusions.—We have studied nonreciprocal PB ef-

fects in a spinning Kerr resonator. By fixing the CCW
rotation of the resonator, we find that, (i) for Pin = 2 fW,
∆sag = ±U/2 and k = 1.5, we have 1PB and PIT for the
CW and CCW modes, respectively; (ii) for Pin = 0.3 pW,
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∆sag = ±U/2 and k = 2.5, we have 2PB and PIT for
the CW and CCW modes, respectively; more interest-
ingly, (iii) for Pin = 0.3 pW, ∆sag = ±U/2 and k = 1.5,
we have 1PB and 2PB for the CW and CCW modes,
respectively (for more examples, see the Supplementary
Material [73]). These results can be useful in achieving
e.g., nonreciprocal few-photon sources and quantum one-
way devices.

The basic mechanism of this work can be generalized to
a wide range of systems, such as acoustic and electronic
devices [12–17], to achieve e.g., nonreciprocal phonon
blockade [46–48], as a test of the quantumness of mechan-
ical devices [77]. Our work can also be extended to study,
e.g., nonreciprocal photon turnstiles [104], nonreciprocal
photon routers [105–107], and nonreciprocal extraction of
a single photon from a laser pulse [108], by considering a
hybrid device with atoms [109, 110], quantum dots [111],
or nitrogen-vacancy centers [112].
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the ladder of dressed states and nonclassical light gen-
eration in quantum-dot–cavity QED,” Phys. Rev. A 85,
041801 (2012).

[81] A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento,
K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Pig-
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