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Atomic magnetometry is one of the most sensitive ways to measure magnetic fields. We present
a method for converting a naturally scalar atomic magnetometer into a vector magnetometer by
exploiting the polarization dependence of hyperfine transitions in rubidium atoms. First, we fully
determine the polarization ellipse of an applied microwave field using a self-calibrating method,
i.e. a method in which the light-atom interaction provides everything required to know the field
in an orthogonal laboratory frame. We then measure the direction of an applied static field using
the polarization ellipse as a three-dimensional reference defined by Maxwell’s equations. Although
demonstrated with trapped atoms, this technique could be applied to atomic vapors, or a variety of
atom-like systems.

Sensitive magnetometers are increasingly important in
both fundamental and technological applications. High
accuracy and precision magnetometers are used for dark
matter searches and aid in tests of fundamental sym-
metries. They enable applications ranging from naviga-
tion, timekeeping, and geophysical measurement to bio-
logical imaging. A wide array of application-specific re-
quirements has yielded a wide array of magnetometry
technologies, drawing on atomic vapors [1, 2], nitrogen-
vacancy centers [3], nuclear magnetic resonance [4], and
superconducting quantum-interference devices [5].

For many magnetometry applications measurement of
the scalar field is sufficient, but also knowing the field’s
full vector description can have important implications,
in particular in geosensing [6–8] and the calibration of
precision physics experiments [9]. However, mapping a
magnetic field in three-dimensional space with a robust
calibration is nontrivial, and presents distinct challenges
in different platforms.

Superconducting quantum interference devices
(SQUIDS) and Hall or fluxgate sensors are naturally
sensitive to a field component perpendicular to, for
example, a current loop. But multiple sensors must
be used to measure the field in all three dimensions,
and common problems are drifts or uncertainties in
the relative directions of the axes [10, 11]. Solid-state
sensors such as nitrogen vacancy (NV) centers in
diamond have emerged as a robust and broadband
room-temperature platform for magnetic sensing and
imaging. The inherent crystalline structure of NVs
provides a natural reference for vector sensing that is
actively being developed [12–17].

The most precise magnetometers, which reach sensi-
tivities beyond fT/

√
Hz, are atomic magnetometers that

consist of many indistinguishable atoms in the vapor
phase [18]. However, as they are based on Larmor pre-
cession, they are scalar sensors, and there is no natural
knob for breaking down the total field into components.
In the most standard approach to an atomic vector mag-

netometer, vector addition of an applied static bias field
and the field to be measured can be used to extract the
unknown field direction [19–21]. However, knowledge of
the applied bias fields in a orthogonal laboratory frame
is limited by the calibration of the external coil set used
to apply the bias field. To avoid reliance upon mechan-
ical construction tolerances for calibration, a number of
ideas have been developed for atomic vector magnetome-
ters, such as double-resonance magnetometers [22–24],
the use of electromagnetically-induced-transparency ef-
fects [25, 26], and orthogonal pump beams and effective
fields of optical light [27].

In this Letter, we introduce a spatial reference for
vector atomic magnetometry based upon the three-
dimensional structure of a microwave field. Our work
draws on advances in microwave-field measurements and
imaging using atoms [28–30]. In these techniques, a mi-
crowave field can be characterized through the atomic
response the microwave radiation with respect to an
applied quantization axis. In our work, we demon-
strate a general algorithm for full reconstruction of a
microwave polarization ellipse based upon atomic mea-
surements. Importantly, we show self-calibration of the
three-dimensional ellipse: Systematics in the direction
and strength of applied bias fields, e.g. non-orthogonal
field orientations, can be located and corrected based
upon the expected atomic response and electro-magnetic
field structure.

Using the reconstructed microwave polarization ellipse
as a fundamental reference, we demonstrate atomic vec-
tor magnetometry. We measure the strength and direc-
tion of an applied static magnetic field using only the
microwave polarization information and the strength of
atomic transitions, without the need for rotation of ad-
ditional static fields. Our magnetometer can operate in
either small field or with an applied reference field.

Our experiments take place using single trapped alkali
atoms; while the sensitivity of the experiment undertaken
with a few atoms is limited, it enables a proof-of-principle
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FIG. 1. (a) Sketch of experimental setup. 87Rb atoms (green)
are trapped in nine optical tweezers and coherently manipu-
lated using microwave radiation (red ellipse). The direction of

a magnetic bias field ~Bbias (blue arrow) can be rotated in any
direction given by Euler angles α and β defined in the labo-
ratory frame (~x, ~y, ~z). The bias coils form a non-orthogonal
coordinate frame (~xc, ~yc, ~zc) with angles (δβx, δαy, δβy) rela-
tive to the laboratory frame. (b) Hyperfine transitions (red)
between Zeeman-sublevels of 87Rb. (c) [left panel] Strength
of the Bσ− component of a microwave field for all directions

(α, β) of ~Bbias in the laboratory frame for an example polar-
ization ellipse. [center and right panels] Differences in mea-
sured and predicted Bσ− for the sample values of δβx and δβy
are indicated.

demonstration. In trapped atom experiments, developing
knowledge of applied microwave polarization can be use-
ful, e.g. for optimization of atomic Rabi rates or charac-
terization of effective magnetic fields in complex trapping
potentials [31–36]. In the context of atomic magnetom-
etry, we envision our technique will be most relevant to
hot-vapor cells, where one can measure magnetic fields
with greater precision and versatility.

We begin by describing our specific experimental setup,
although the procedures we describe apply generally. We
use single 87Rb atoms loaded with 50%-probability into
a regular 3 × 3 array of 1.7 µm-spaced optical tweez-
ers [Fig. 1(a)] [36]. We use four levels of 87Rb: A
ground-state |g〉 = |F = 1,mF = 1〉 and three ex-
cited hyperfine states |e+〉 = |2, 2〉, |eπ〉 = |2, 1〉 and
|e−〉 = |2, 0〉 states. During the experiment, we first
initialize the atoms in |g〉 and then address the excited
states using σ± and π-polarized light components of a
6.834-GHz-microwave field (λ ≈ 44 mm) with magnitude

| ~Bµw|max ≡ ‖ ~Bµw‖ ≈ 7.8 µT [Fig. 1(b)].

The transitions are split by a 300-µT-strong static

magnetic bias field ~Bbias. The maximal splitting (∼ 4.2
MHz) is < 0.1% of the microwave frequency, and hence
spatial field differences are irrelevant when resonant with
a transition. ~Bbias is controlled by three coil pairs in
near-Helmholtz configurations that define a coil-frame
C = (~xc, ~yc, ~zc) that importantly is not necessarily or-
thogonal. An orthonormal laboratory frame L = (~x, ~y, ~z)
is chosen s.t. ~z [Euler angles: (α, β) = (0, 0)] is oriented
along ~zc, and ~xc and ~yc point in directions given by angles
(0, π/2 + δβx), and (π/2 + δαy, π/2 + δβy), respectively
[Fig. 1(a)].

We then determine the full polarization ellipse (PE)
of the magnetic component of our microwave excitation
field, expressed in L as:

~Bµw =
∑

j∈{x,y,z}

1

2
Bje−i(φj+ωt)~ej + c.c. (1)

~Bµw traces the PE determined by 5 independent parame-
ters: 3 fields (Bx,By,Bz) and two relative phases (φx, φy),
where φz = 0 without loss of generality [37].

The quantization axis of our atoms, defined along
~Bbias, is always well-defined because ‖ ~Bµw‖ � | ~Bbias|.
The microwave field amplitudes B±σ and Bπ that drive
the ∆mF = ±1 and ∆mF = 0 atomic transitions, respec-
tively, are strongly dependent on the direction of ~Bbias

and hence denoted as B(α,β)i for i ∈ (σ±, π) hereafter.

The B(α,β)i are related to the 5 polarization-ellipse pa-
rameters and the direction of the bias field (α, β) by [37]:

(
B(α,β)π

)2
=B2z cos2(β)

+
(
B2x cos2(α) + B2y sin2(α)

)
sin2(β)

+ BzBx sin(2β) cos(α) cos(φx)

+ BzBy sin(2β) sin(α) cos(φy)

+ ByBx sin(2α) sin2(β) cos(φx − φy) (2a)

(
B(α,β)±σ

)2
=

1

2

 ∑
j∈

{x,y,z}

B2j −
[
B(α,β)π

]2
± BxBy cos(β) sin(φx − φy)

∓ BxBz sin(α) sin(β) sin(φx)

± ByBz cos(α) sin(β) sin(φy). (2b)

Therefore, to recreate the full PE, 5 independent mea-

surements of (B(α,β)±σ ,B(α,β)π ) can solve for the 5 unknown
ellipse parameters [37]. For this, one can either vary
(α, β) or the atomic transition.

In order to avoid systematic errors that may en-

ter this procedure, we accurately extract B(α,β)i from

the corresponding (measured) Rabi frequency Ω
(α,β)
i =

µiB(α,β)i

/
~. This, when referenced to a frequency stan-
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dard, determines B(α,β)i absolutely if the magnetic tran-
sition dipole moment µi is calculated from basic assump-

tions [38]. We measure Ω
(α,β)
i using (pulsed) coherent

population transfer [28, 30, 37–40], in which we apply a
resonant microwave pulse of varying duration and fit the
oscillating population in the atomic ground state [38].

However, systematic errors also enter through discrep-
ancies of the intended and actual applied direction (α, β)

of ~Bbias. When performing any directional measure-
ment with an atom(-like) system this is a general lim-
itation which is typically addressed by referencing to
an externally-calibrated system. Now let values {Uj},
j ∈ [1, Nu] describe the Nu unknown systematic errors

that modify the value and direction of ~Bbias. The {Uj}
can be self-calibrated by performing ≥ Nu additional
measurements and then solving the system of ≥ Nu + 5
equations for (Bx,By,Bz, φx, φy; {Uj}).

In our experiment, parameters {Uj} are: orienta-
tions of the coil pairs (U1, U2, U3) = (δβx, δβy, δαy)
forming C [Fig. 1(a)], components of a (stray) mag-
netic field (U4, U5, U6) = (Bs

x, B
s
y, B

s
z) due to im-

perfect cancellation of ambient magnetic fields, and
calibration errors (U7, U8, U9) = (| ~Bbias|, εx, εy) in
~Bbias = | ~Bbias|(εxbx, εyby, bz) using the parametrization∑
i∈(x,y,z) b

2
i = 1 [38]. Note, this set of parameters also

includes the magnitude of ~Bbias that will be determined
from Zeeman shifts, which is irrelevant for determining
a PE, but defines a common scaling factor for all static
fields. We therefore need ≥ 14 measurements to self-
calibrate our magnetometer and the bias-field strength.

Our self-calibration of the {Uj} stems from the struc-
ture of the microwave light dictated by Maxwell’s equa-
tions. To illustrate the key idea, we consider two sim-
ple examples where either U1 = δβx or U2 = δβy are
unknown. Assume all of the Nu measurements are per-

formed on the B(α,β)σ− -component of an elliptically polar-
ized microwave field. The expected values of Bσ− for
an example PE are shown in L as a function of (α, β)
[Fig. 1(c)]. If C deviates from L such that (βx, βy) =

(0, 0.05π), the functional form of B(α,β)σ− = Bσ−(α, β;βy)
will deviate from the expectation in L with a specific
pattern ∆Bσ− [center panel in Fig. 1(c)]. This field
pattern cannot be reproduced by allowed microwave el-
lipses, and is distinctly connected to the unknown param-
eter. Importantly, a different pattern is associated with
(βx, βy) = (0.05π, 0) [right panel in Fig. 1(c)]. Suitably
chosen measurements can hence lead to full differentia-
tion and absolute characterization of the unknowns {Uj}.

To calibrate the 9 {Uj}, we measure B(α,β)σ− (together
with the Zeeman-shift of the σ−-transition) for 28
different directions (α, β) [black points in Fig. 2(a)].
Using quadratic minimization [38] and Eq. (2b), these
are enough measurements to determine (δβx, δαy, δβy) =
(1.3 mrad, 10.9 mrad, 5.4 mrad), (Bs

x, B
s
y, B

s
z) =

FIG. 2. (a) (2D-plot) Predicted magnetic field component

B(α,β)
σ− using parameters from the polarization ellipse PE1, as

a function of the bias-field direction (α, β). (small panels)
Measured magnetic microwave field component (black data)
and predictions along the solid, dashed, and dot-dashed cuts
in the 2D-plot, respectively. The measurement uncertain-
ties are smaller than the datapoints. (b) Polarization ellipses
PE1(dashed, red), PE2(black) and PE3(green), respectively.
PE1 is the reference ellipse from the 28 calibration measure-

ments of B(α,β)
σ− from panel (a). Comparison of ellipses PE2

(PE3) assess our protocol using 5 of 6 measurements [38] with-
out (with) taking into account calibrated {Uj}, see text. (c)

Overlayed histograms of the relative errors ∆B(α,β)
σ−,rel.

of all po-

larization ellipses and for all measurements displayed in panel
(a). The colorcoding is the same as for panel (b).

(−6.05µT, 0.14µT,−1.12µT), | ~Bbias| = 302.0 µT,
(εx, εy) = (1.001, 0.989), and a polarization el-
lipse we refer to as PE1: (Bx,By,Bz, φx, φy) =
(5.023(5)µT, 5.757(4)µT, 1.600(4)µT, − 1.941(4),
−1.873(4)) [red, dashed ellipse in Fig. 2(b)]. We cannot
extract uncertainties for the {Uj}, but estimations have
shown that we need to vary a Uj by ∼ 20% to change
PE1 by its uncertainty of . 0.2%. Furthermore, the
result is within expectation of experimentally-defined
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parameters in our setup [38]; for example the angles
measured are consistent with machining tolerances of
the coil mounts. The measured Zeeman shift allows de-
termination of | ~Bbias| which has a consistent dependence
on (α, β) [38].

Figure 2(a) predicts B(α,β)σ− for all directions of ~Bbias

using Eq. (2b), and could be used to optimize atom-

light coupling by choosing a suitable ~Bbias. Further-
more, quantitative comparison with measurements indi-
cates of how well {Uj} and the ellipse parameters have
been determined. For this, we investigate the relative er-

rors ∆B(α,β)σ−,rel.
of all measured B(α,β)σ− and their predicted

values [see red histogram Fig. 2(c)]. Not surprisingly,

we find all ∆B(α,β)σ−,rel.
being distributed around 0, as they

have been used to determine PE1. The width of the
distribution is consistent with the B(α,β)σ− -measurement
uncertainty of ∼ 0.1%, and a microwave-amplitude drift
over several minutes of . ±1% [38]. This drift could be
stabilized in future experiments.

We experimentally verify self-calibration by compar-
ing polarization ellipses found using a completely inde-
pendent set of measurements [black and green ellipses in

Figure 2(b)]: B(0,0)σ+ , B(0,0)σ− , B(0,π/2+δβx)
σ+ , B(0,π/2+δβx)

π ,

and B(0,π/2+δβx)
σ− . Note, here we rotate our bias field from

~zc to ~xc in C (only two directions!) and measure all three
polarization components, in contrast to before, where we
measured a single polarization for many directions. Still,
using Eqs. (2), we determine the microwave field in all
three dimensions.

The black ellipse (PE2) is based on the wrong assump-
tion that our coils are perfectly orthogonal, calibrated,
and no stray magnetic fields are present (Uj = 0, ex-

cept U7 = | ~Bbias| = 300 µT). The green ellipse (PE3),
takes into account the correctly calibrated {Uj} and a
microwave drift correction of 1% [38]. Both polarization
ellipses PE2 and PE3 agree roughly with PE1 in shape
and size. However, PE2 (wrong calibration) shows rel-

ative errors ∆B(α,β)σ−,rel.
larger than 5% which cannot be

explained by microwave drifts or measurement uncertain-
ties [Fig. 2(c)]. Contrary, PE3 (using the correct {Uj})
predicts the (independent) 28 measurements correctly,

i.e. the width of the ∆B(α,β)σ−,rel.
-distribution [Fig. 2(c)] is

consistent with our microwave drifts [38].

With the microwave field as a static, well-calibrated
reference in the laboratory frame L, we now use the
atoms to vectorially resolve a set of 3 intentionally
applied static probe fields ~Bp in L. The procedure:
combine any scalar atomic measurement of | ~Bp| with
two Rabi-rate measurements to determine its orienta-
tion. Here, the ∼ 200 µT-strong-probe magnetic fields
~Bp
j [j = (xc, yc, zc)] are sequentially applied along ~xc,

~yc, and ~zc, respectively, in addition to a reference field
{| ~Bref|, (α, β)ref} ≈ {300 µT, (0.1π, 0.6π)}. We measure

the total magnetic bias field ~Bm
j = ~Bp

j + ~Bref (and for

completeness, ~Bref) and determine ~Bp
j by subtraction of

~Bref. The use of a reference field ~Bref 6= 0 is not necessary,
but can be useful [38]. All magnetic field magnitudes are
found from the mean of the atomic Zeeman-shifts of all
three available transitions. The directions (α, β)j of ~Bm

j

and ~Bref are determined by measuring B(α,β)jσ− and B(α,β)jπ

and then use Eq. (2) to solve for (α, β)j via quadratic

minimization [38]. We also measure B(α,β)jσ+ , but use this
for keeping track of drifts in the amplitude of our applied
microwave field.

We find {| ~Bref|, [α, β]ref} = {296.6(2)µT, [0.103(1)π,
0.588(6)π]} (brown lines). Sequential application of the

3 probe fields ~Bp
j results in total measured fields {| ~Bm

j |,
[α, β]mj } = {476.1(8)µT, [0.0636(6)π, 0.554(6)π]},
{301.5(3)µT, [0.108(2)π, 0.396(4)π]}, and {399.2(5)µT,
[0.260(1)π, 0.577(2)π]} [solid blue lines in Figure 3]. The
multiple lines represent measurement uncertainties from
bootstrapping the error with 200 trials. The difference
in uncertainties for these measurements is determined
by the precision with which we measure Ω

(α,β)
i , and by

its transfer function to the field direction. This trans-
fer function causes the uncertainties to be asymmetric
(aspect ratios up to 30) and is linked to the choice of
~Bref [38].

We determine the mean probe fields ~Bp
j = ~Bm

j − ~Bref

(black) as the difference between the blue ( ~Bm
j ) and

the brown ( ~Bref) vectors. The probe fields that we ex-
pect (red lines) point in ~xc, ~yc and ~zc-direction from
~Bref, and deviate from ~Bm

j − ~Bref by 16 mrad, 79 mrad
and 23 mrad, respectively. For the ~yc and ~zc-direction,
these values are just outside the confidence interval based

FIG. 3. Vector magnetometry in an orthonormal labora-
tory frame L: Targeted (red) applied magnetic field vectors
~Bp
j , j ∈ (xc, yc, zc), can be reconstructed (black) as the differ-

ence between all measured vectors ~Bm
j (dark blue lines) and

an initially applied reference field ~Bref (brown lines). The
multiple lines for all displayed measured fields indicate the
range of measurement errors, determined by bootstrapping
the error with 200 trials.
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on the measurement uncertainties, but can be fully ex-
plained when including the slow drift of the microwave
field strength reported earlier [38]. Over the course of
this set of measurements, this drift was found to be
≤ ±0.5% as inferred from all the measured magnitudes
7.841(8) µT, 7.840(6) µT, 7.789(5) µT, and 7.815(7) µT,
respectively.

The magnetometer can measure static and slowly vary-
ing magnetic fields, and can operate with (reference) or

without ~Bref (reference-free, | ~Bp| � | ~Bref| ≈ 0). In ref-

erence mode, the uncertainty of ~Bref increases the un-
certainty of ~Bp

j , which is not the case for the reference-

free mode. But ~Bref 6= ~0 enables control over the mag-
netometers precision for a targeted parameter of inter-
est and given noise sources, e.g. allowing ”squeezing”
the measured variance in certain directions [38]. Also,
the reference mode avoids the complication of identify-
ing the correct result out of 4 possible field solutions of
Eqs. (2) [38], a challenge that can only be addressed in
the reference-free mode with strategies such as an addi-
tional test-field [38].

Looking forward, we envision reconstruction of the mi-
crowave polarization ellipse to be a general-purpose ref-
erence for not only magnetic fields, but other excitation
fields (e.g. optical fields or electric components). Fur-
ther assessment is required to understand the potential
for precision and sensitivity. Different measurement pro-
tocols should be developed to transition these ideas to
scalable and more-sensitive atomic vapor cells. Coherent
population transport was a robust way for us to measure
microwave field strengths, but there are other ways to
determine Rabi rates, e.g. by spectroscopic means. As
with a variety of atomic sensors, this platform for vec-
tor magnetometry is compatible with futuristic quantum-
enhancement, as established with cold atoms [41, 42].
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J. M.,“On the calibration of a vectorial 4he pumped mag-
netometer,”Earth, planets and space 53, 949–958 (2001).

[20] A. K. Vershovskii, M. V. Balabas, A. É. Ivanov, V. N.
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