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Operationally accessible entanglement in bipartite systems of indistinguishable particles could
be reduced due to restrictions on the allowed local operations as a result of particle number con-
servation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902
(2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated
by advances in measuring Rényi entropies in quantum many-body systems subject to conservation
laws, we derive a generalization of the operationally accessible entanglement that is both computa-
tionally and experimentally measurable. Using the Widom theorem, we investigate its scaling with
the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling,
similar to the spatial entanglement entropy, with at most, a double-log leading-order correction. A
modification of the correlation matrix method confirms our findings in systems of up to 105 particles.

Entanglement encodes the amount of non-classical in-
formation shared between complementary parts of an ex-
tended quantum state. For a pure state described by
density matrix ρ, it can be quantified via the Rényi en-
tanglement entropies: Sα(ρA) = (1−α)−1 ln Tr ραA where
ρA is the reduced density matrix of subsystem A and Sα
is a non-increasing function of α. While evaluation of the
α = 1 (von Neumann) entanglement entropy requires a
complete reconstruction of ρ, [1, 2], integer values with
α > 1 can be represented as the expectation value of a
local operator [3]. This has enabled entanglement mea-
surements in a wide variety of many-body states, both via
quantum Monte Carlo [4–8] and experimental quantum
simulators employing ultra-cold atoms [9–14]. In these
systems, conservation of total particle number N may
restrict the set of possible local operations, (a superse-
lection rule) and can potentially limit the amount of en-
tanglement that can be physically accessed [15–22]. For
example, while a superfluid of N bosonic 87Rb atoms in a
one-dimensional optical lattice is highly entangled under
a bipartition into spatial subregions [10], much of the en-
tanglement is generated by particle fluctuations that can-
not be transferred to a quantum register without access
to a global phase reference [23]. Wiseman and Vaccaro
introduced an operational measure of entropy to quantify
these effects [17], but it is limited to the special case of
α = 1 and thus cannot be used in tandem with current
simulation and experimental studies of entanglement.

In this paper, we study how the operationally acces-
sible entanglement can be generalized to the Rényi en-
tropies with α 6= 1. Recalling its definition for α = 1, it is
constructed by averaging the contributions to S1 coming
from each physical number of particles in the subsystem:

Sacc
1 (ρA) =

N∑
n=0

PnS1(ρAn) (1)

where ρAn = PAnρAPAn/Pn is the projection into the
sector of n particles in A, An, via PAn which occurs with

probability Pn = TrPAnρAPAn . This projection consti-
tutes a local operation which can only decrease entangle-
ment by an amount bounded by the maximum entropy of
the classical number fluctuation probability distribution
Pn. Thus, a conservation law on the total number of par-
ticles imposes that any Rényi generalization of Eq. (1) to
Sacc
α must satisfy 0 ≤ Sα − Sacc

α ≤ lnD where D is the
support of Pn. Under this physical constraint, we show
that a direct extension of Eq. (1) to α 6= 1 is not generally
appropriate.

Instead, we reconsider the problem in terms of the
mathematical relationship between the von Neumann
and α 6= 1 Rényi entropies – that of a geometric to power
mean – and identify a unique measure:

Sacc
α (ρA) =

α

1− α ln
∑
n

Pne
1−α
α Sα(ρAn ) (2)

which not only provides a lower bound on the amount of
accessible entanglement entropy in a pure state, but is
accessible with current technologies for integer α > 1.

We validate that Eq. (2) reproduces Eq. (1) as α→ 1
and prove that it is a non-increasing function of Rényi in-
dex α in analogy with Sα. We show that Sacc

α = 0 when
all particles have condensed into a single mode, e.g. a
Bose-Einstein condensate, and demonstrate that in the
limit of large subsystem size, it agrees with the known
behavior of Sacc

1 for free fermions in d spatial dimensions
[24] – that the fixed total particle number reduces the
accessible entanglement only by a subleading logarithm,
Sacc
α ≈ Sα− 1

2 lnSα. Such asymptotic scaling is expected
for 1d critical systems with fixed N that can be described
by a conformal field theory, where the particle number
distribution is Gaussian [25, 26].

The main contributions of this work are (1) the intro-
duction of the Rényi generalization of the accessible en-
tanglement entropy; (2) an investigation of its asymptotic
scaling properties for free fermions via the Widom theo-
rem supported by exact calculations for non-interacting
1d lattice fermions; and (3) a discussion of how the ac-
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cessible entanglement could be measured in ultra-cold
atomic lattice gases using current technology.

We begin with the observation that the Renyi entan-
glement entropy with α 6= 1 is a generalization of the
α = 1 von Neumann entanglement entropy obtained by
replacing a geometric mean with respect to the reduced
density matrix ρA with a power mean. Extending this
idea to Sacc

1 (ρA) in Eq. (1) there are now two geomet-
ric means to be replaced, one over ρA and one over the
number probability distribution Pn. The resulting gener-
alization is given by (see derivation in the supplemental
material [27]):

Sacc
α (ρA; γ) = − ln

[∑
n

Pn
(
Tr ρAρ

α−1
A

) γ
α−1

] 1
γ

(3)

where we have introduced an as of yet undetermined
power mean exponent γ = γ(α). In the limit γ → 0, one
recovers the direct extension of Eq. (1): Sacc

α (ρA; 0) =∑N
n=0 PnSα(ρAn) which was previously proposed to

study a system of bosons in one dimension [28].
Defining ∆Sα(γ) ≡ Sα(γ) − Sacc

α (γ) as the impor-
tant quantity which captures the reduction of the en-
tanglement due to a superselection rule, we now ex-
plore what restrictions are imposed on the exponent γ
by the physical constraint that 0 ≤ ∆Sα(γ) ≤ lnD.
To this end, we consider the example of a reduced den-
sity matrix of a spatial partition of ` sites, obtained
from a pure state of N � 1 particles, where the num-
ber fluctuations are described by the normalized dis-
tribution: Pn = AN exp[−(N − n)/

√
N ]. The corre-

sponding eigenvalues of ρA are equal for each n: λn,i =

`−nAN exp[−(N − n)/
√
N ] where i = 1, . . . , `n. In this

case, D = N + 1 and the asymptotic dependence of
∆Sα>1(γ), to leading order, on N for γ 6= 1 − α−1 is
given by ∆Sα>1(γ) ≈ ( α

α−1 − 1
γ )
√
N for γ > 0 and

∆Sα>1(γ) ≈ −N ln ` for γ ≤ 0 which violates the con-
dition 0 ≤ ∆Sα(γ) ≤ lnD for any γ 6= 1 − α−1. If we
modify the above example by rearranging the probabili-
ties in the reverse order, i.e. replacing Pn with PN−n, we
arrive at the same conclusion for α < 1 (see supplemental
material [27] for complete proof.)

For γ = 1−α−1 it can be proven that the inequality 0 ≤
∆Sα(γ) ≤ lnD is satisfied in general [27]. Moreover, for
this case, Sacc

α represents a lower bound for Sacc
1 for α > 1

(upper bound for α < 1), i.e. Sacc
α is a non-increasing

function of α, and by construction, limα→1 S
acc
α = Sacc

1

[27]. Substituting γ = 1−α−1 in Eq. (3) we obtain Eq. (2)
which we propose as the unique Rényi generalization of
the accessible entanglement entropy.

For more physical insight into the form of this mea-
sure, we appeal to a previously noticed connection be-
tween the von Neumann accessible entanglement and the
Shannon conditional entropy [24, 29]. If the spectrum of
the reduced density matrix ρA is treated as a joint proba-
bility distribution of two random variables, one of which

is the number of particles n in partition A, then Eq. (1)
is equivalent to the conditional entropy of the probabil-
ity distribution, where the condition is information of n
in the subregion. Many different candidate measures for
the classical conditional Rényi entropy have been pro-
posed [30–34], but if one requires that they satisfy both
monotonicity and the weak chain rule, then the classical
limit of Eq. (2) is recovered.

Having understood the origin of the Rényi generalized
accessible entanglement entropy, in order to actually per-
form computations, we exploit that fact that for pure
states of N particles, ρA is block diagonal in n and thus
Eq. (2) can be conveniently rewritten as

Sacc
α = Sα −H1/α ({Pn,α}) (4)

where Hα ({Pn}) = (1−α)−1 ln
∑
n P

α
n is the Rényi gen-

eralization of the Shannon entropy of Pn,

Pn,α =
Tr [PAnραAPAn ]

Tr ραA
(5)

is a normalization of partial traces of ραA, and Pn,1 = Pn.
From Eq. (4) one immediately recovers the previously
known result for α = 1 that ∆S1 = H1 [24] where we
write Hα ≡ Hα({Pn}) for simplicity.

In the remainder of this paper we use Eqs. (4) and
(5) to calculate the Rényi generalized accessible entan-
glement for two simple models of non-interacting parti-
cles. First, we consider the case of N non-interacting
bosons on a d-dimensional hypercubic lattice of Ld sites
with unit lattice spacing. The ground state consists
of all particles condensed into one single-particle mode
|Ψ〉 = (N !)−1/2(Φ†0)N |0〉 where Φ†0 =

∑
j Bjb

†
j and b†j

creates a boson on site j with
∑
j |Bj |2 = 1. We take

a spatial bipartition A that contains a set of `d contigu-
ous sites and decompose Φ†0 =

√
pAΦ†A +

√
pĀΦ†

Ā
with

pA = |〈0|ΦAΦ†0|0〉|2, pĀ = 1− pA and Φ†A acts in A, sim-
ilarly for the complement Ā. Then, the ground state can
be directly written as the Schmidt decomposition

|Ψ〉 =

N∑
n=0

λ1/2
n |n〉A ⊗ |N − n〉Ā

where λn =
(
N
n

)
pnAp

N−n
Ā

, |n〉A = (n!)−1/2(Φ†A)n|0〉A and

|N −n〉Ā = [(N −n)!]−1/2(Φ†
Ā

)N−n|0〉Ā. For free bosons

pA = (`/L)
d

[7, 35]. The reduced density matrix ρA ob-
tained by tracing out Ā is thus pure for each n: ρAn =
|n〉〈n| resulting in Sα = Hα and Pn,α = Pαn /

∑
n P

α
n ⇒

Sacc
α = 0. This is expected for the Bose-Einstein conden-

sate where for N � 1 with pA fixed, Pn = λn approaches
a Gaussian distribution and Sα = Hα ≈ 1

2 lnN [35, 36] is
generated from particle fluctuations between subregions.

To understand the behavior of Sacc
α for fermionic statis-

tics, we focus on a microscopic model of non-interacting
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fermions on a d-dimensional lattice where the correla-
tion matrix method [37–41] is applicable. This pro-
vides an exponential simplification of the calculation of
Sα(ρA) and allows for the investigation of its asymp-
totic behavior. In this case, A corresponds to some
collection of `d lattice sites and the eigenvalues of ρA
that correspond to having n particles in partition A, are

λn,a =
∏`d

j=1

[
ν
nj,a
j ν̄

(1−nj,a)
j

]
, where the index a runs

over all possible configurations of the occupation num-
bers nj,a ∈ {0, 1} with n =

∑
j nj,a ∀a and ν̄j = 1 − νj .

Here, νj are the eigenvalues of the correlation matrix

(CA)ij = 〈c†i cj〉 = Tr ρAc
†
i cj where i, j are restricted to

the spatial partition A and c†i (ci) creates (annihilates) a

spinless fermion at lattice site i (ci c
†
j + c†jci = δij) [37].

This approach can be generalized to calculate the par-
ticle number projected Rényi entanglement Sα(ρAn) =

Sα+(1− α)
−1

ln (Pn,α/P
α
n ) and thus Sacc

α (ρA). However,
as we are interested in the reduction of entanglement due
to the presence of superselection rules, we focus on the
difference ∆Sα = Sα − Sacc

α which depends only on:

Pn,α =
∑
a

`d∏
j=1

[
ν
nj,a
j,α ν̄

(1−nj,a)
j,α

]
, (6)

where νj,α = ναj /(ν
α
j + ν̄αj ). An important first step

is the observation that Pn,α has the form of a Poisson-
binomial distribution [42] with `d different success prob-
abilities νj,α [43]. In order to investigate the asymp-
totic scaling of ∆Sα with linear subsystem size ` we
need to consider the behavior of Pn,α or, alternatively,
its characteristic function (Fourier transform) χα(λ) =∏`d

i=1

[
1− νj,α + νj,α eiλ

]
which can be expressed in

terms of the matrix CA as

lnχα(λ) = Tr ln
[
1− CA,α + CA,α eiλ

]
, (7)

where CA,α ≡ CαA/[C
α
A + (1 − CA)α]. This form is con-

venient, as the α = 1 case, providing access to the scal-
ing of Pn,1 = Pn, has already been obtained for the d-
dimensional free Fermi gas by means of the Widom theo-
rem [24, 44–50]. Motivated by these results, we calculate
the characteristic function χα(λ) for a d-dimensional spa-
tial subregion with dimensionless linear size ` in the limit
`� 1 where ` is now treated as a continuous variable. We
find that, Pn,α is a normal distribution with the same av-
erage as Pn and variance σ2

α = σ2/α ∼ `d−1 ln `/α, where
σ2 is the variance of Pn [27]. In this case, Pn,α ∼ Pαn ⇒
H1/α({Pn,α}) = Hα({Pn}) leading to

∆Sα ≈ Hα ≈ ln
√

2πσ2α1/(α−1) ∼ 1
2 ln

(
`d−1 ln `

)
, (8)

which, if compared to the asymptotic scaling of Sα ∼
`d−1 ln ` [48], implies that ∆Sα ≈ 1

2 lnSα. We thus con-
clude that fixed N only reduces the Rényi generalized
accessible entanglement of the free Fermi gas by a sub-
leading double logarithm of ` for `� 1.
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FIG. 1. Scaling of the difference between the Rényi and acces-
sible entanglement entropy, ∆S2 and H2, with the log of the
variance of Pn, ln(σ2), for subregions up to ` = 105 connected
sites. The results were calculated using the correlation ma-
trix method for free fermions in the ground state of H. Inset:
Scaling of σ2 with ln(`c), where `c = (2N/π) sin[π`/(2N)] is
the chord length, highlighting the double logarithmic growth
of the width of the distribution Pn.

To confirm the asymptotic predictions of Eq. (8) we
now apply the extended correlation matrix method in-
troduced above to a model of N free spinless lattice
fermions on a ring of 2N sites (half-filling) governed by

the Hamiltonian H = −∑i(c
†
i ci+1 + h.c.) [51]. The

correlation matrix for the ground state Fermi sea is

(CA)ij = sin[π(i−j)/2]
2N sin[π(i−j)/2N ] . We studied systems with up

to N = 105 fermions and partition sizes ` = 105 sites,
where we calculate ∆Sα and Hα using Pn,α which we
obtain via a recursion relation for the Poisson-binomial
distribution [52]:

Pn,α(j) = νj,αPn−1,α(j − 1) + ν̄j,αPn,α(j − 1). (9)

The desired distribution is reached after ` recursive steps,
i.e. Pn,α = Pn,α(`) and Eq. (9) drastically reduces the
complexity to an O(`2) algorithm [52].

The results in Fig. 1 demonstrate the predicted loga-
rithmic scaling of ∆S2 with σ2 = 2σ2

2 as well as the fact
that asymptotically, ∆S2 ≈ H2, i.e. that Pn,2 appears to
behave as a continuous normal distribution. For this par-
ticular case of free fermions we find that Sα−Sacc

α > Hα,
but this may not be generically true in interacting mod-
els. Additionally, as seen in Fig. 2, Pn is very narrow,
with σ2 < 1.4 and thus the main contribution comes from
only a few points around its peak. This suggests that to
truly reach the asymptotic regime, we need to further
increase σ2 by several orders of magnitudes beyond our
current numerical capability.

As an alternative, we generalize the known asymptotic
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FIG. 2. The spectrum of the correlation matrix CA of free
fermions calculated via exact diagonalization (empty circles)
and from the asymptotic relation in Eq. (10) (filled circles) for
N = 105 at half-filling with partition size ` = 105. Insets: The
corresponding number probability distribution Pn vs n− 〈n〉
on a linear (left) and log (right) scale. The solid line shows a
normal distribution N with the average 〈n〉 and variance σ2

of Pn demonstrating its convergence but narrow width.

behavior of νj [53–55] to νj,α as

νj,α =

[
1 + exp

(−απ2(`− 2j + 1)

2[ln(8`) + γem]

)]−1

, (10)

where γem ≈ 0.6 is the EulerMascheroni constant and
calculate the characteristic function χα(λ) of Pn,α. We
find that Pn,α is asymptotically a normal distribution
with variance σ2

α = ln `/(απ2) for any α > 0 [27] extend-
ing the results of the Widom Theorem for d = 1 to real
valued α. This is further validated using Eq. (10) with
` ≈ e3000 as shown in Fig. 3.

Thus for free fermions, superselection rules fixing the
total number of particles only marginally reduce the ac-
cessible entanglement that can be transferred from a
many-body state to a quantum register. This is also true
for interacting 1d fermions in the Luttinger liquid regime
[24, 56]. The free fermion result is robust even when ex-
tending to non-contiguous subregions, e.g. a partition of
size ` = N corresponding to even (odd) sites where the
correlation matrix is diagonal and νj,α = νj = 1

2 . Here,
Sα = ` ln 2 and Pn,α = Pn, ∀α are described by a simple
Binomial distribution (normal distribution, asymptoti-
cally) with ` equal success probabilities ν = 1

2 . Thus,
σ2 = `/4 and ∆Sα ∼ lnσ2 yielding ∆Sα ∼ 1

2 lnSα.
This picture can be drastically altered by strong inter-

actions [57] or in bosonic systems [28], where the contri-
bution of particle fluctuations to entanglement are large
and the accessible entanglement is suppressed to zero.

In summary, by exploiting a general relation between
geometric and power means, we derive a unique measure
Sacc
α in Eq. (2) which generalizes the accessible entangle-

ment in the presence of a superselection rule, previously

N (〈n〉, σ2)
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FIG. 3. Collapse of the rescaled probability distribution
Aα(Pn,α)1/α to Pn for different values of α, where Aα is a
normalization factor. The solid line shows a normal distri-
bution N with the average 〈n〉 and variance σ2 of Pn. The
data was obtained using the correlation matrix method with
the asymptotic eigenvalues νj (Eq. (10)) and ln ` = 3000.
We find perfect collapse for both integer (supported by the
Widom Theorem) and non-integer values of α.

defined only for von Neumann entropies, to the more
readily measurable Rényi entanglement entropies Sα.

This definition preserves the limit α → 1, provides
a lower bound on Sacc

1 for α > 1, and is smaller than
Sα while not exceeding the maximum information lost
to particle fluctuations. Sacc

α = 0 for a Bose-Einstein
condensate of fixed total particle number, while for free
fermions, we find that the corresponding superselection
rule reduces the amount of accessible entanglement from
its unconstrained value by a subleading correction that
asymptotically scales as the logarithm of the width of the
probability distribution describing particle fluctuations
in the subregion. We confirm this prediction numerically
using the correlation matrix method on a lattice model
of free fermions, where we have simplified the calculation
by relating the required partial traces ραA to the Poisson-
binomial distribution which can be calculated using a
simple recursion relation. This method can be extended
to other models of non-interacting fermions, including
those with long-range or correlated hopping as well as
disordered systems, where contributions to the entangle-
ment entropy from particle fluctuations will be further
suppressed. It is interesting to speculate on how the ideas
discussed here could be further generalized to understand
the effects of superselection rules on entanglement with-
out resorting to a particular mode bipartition [58–61].

The functional form of the Rényi generalized accessi-
ble entanglement depends only on the full and particle
number projected reduced density matrices that can
be directly computed by creating copies of a physical
system. It is thus accessible using current simulation
[4–8] and experimental [10, 13, 14] techniques for both
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bosons and fermions for integer α ≥ 2 by histogramming
ραA into bins corresponding to the number of particles
n observed in the subregion with appropriate post-
selection [28]. The experimental measurement of the
Rényi generalized accessible entanglement entropy and
confirmation of its robust scaling in fermionic systems
would, in combination with a protocol for its extraction
and transfer to a register, support such many-body
phases as a potential resource for quantum information
processing.
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for Rényi entanglement entropies,” Phys. Rev. E 90,
013308 (2014).

[8] J.E. Drut and W.J. Porter, “Hybrid Monte Carlo
approach to the entanglement entropy of interacting
fermions,” Phys. Rev. B 92, 125126 (2015).

[9] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller,
“Measuring Entanglement Growth in Quench Dynamics
of Bosons in an Optical Lattice,” Phys. Rev. Lett. 109,
020505 (2012).

[10] Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric

Tai, Alexander Lukin, Matthew Rispoli, and Markus
Greiner, “Measuring entanglement entropy in a quantum
many-body system,” Nature 528, 77 (2015).

[11] Adam M. Kaufman, M. Eric Tai, Alexander Lukin,
Matthew Rispoli, Robert Schittko, Philipp M. Preiss,
and Markus Greiner, “Quantum thermalization through
entanglement in an isolated many-body system,” Science
353, 794 (2016).

[12] Hannes Pichler, Guanyu Zhu, Alireza Seif, Peter Zoller,
and Mohammad Hafezi, “Measurement Protocol for the
Entanglement Spectrum of Cold Atoms,” Phys. Rev. X
6, 041033 (2016).

[13] Norbert M. Linke, Sonika Johri, Caroline Figgatt,
Kevin A. Landsman, Anne Y. Matsuura, and Christo-
pher Monroe, “Measuring the Renyi entropy of a two-site
Fermi-Hubbard model on a trapped ion quantum com-
puter,” (2017), arXiv:1712.08581.

[14] Alexander Lukin, Matthew Rispoli, Robert Schittko,
M. Eric Tai, Adam M. Kaufman, Soonwon Choi, Vedika
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