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The numerical renormalization group is used to study quantum entanglement in the Kondo impu-
rity model with a density of states ρ(ε) ∝ |ε|r (0 < r < 1

2
) that vanishes at the Fermi energy ε = 0.

This nonintegrable model features a Kondo-destruction quantum critical point (QCP) separating
a partially screened phase from a local-moment phase. The impurity contribution Simp

e to the en-
tanglement entropy between a region of radius R around the magnetic impurity and the rest of the
system reveals a length scale R∗ that distinguishes a region R ≪ R∗ of strong critical entanglement
from one R ≫ R∗ of weak entanglement. Within each phase, Simp

e is a universal function of R/R∗

with power-law decay for R/R∗ ≫ 1. The entanglement length R∗ diverges on approach to the
interacting QCP, showing that the critical Kondo screening cloud subsumes the entire system as the
impurity becomes maximally entangled with the conduction band. This work has implications for
entanglement calculations in other models and for the nature of heavy-fermion quantum criticality.

Quantification of entanglement [1] has helped develop
new fundamental concepts in condensed matter physics
[2]. The entanglement entropy Se ≥ 0 characterizes a
pure state of a system with respect to partition into sub-
systems A and B: if Se > 0, a measurement that col-
lapses the state of A must also collapse B. Entanglement
has recently been measured in ultra-cold atomic gases [3],
making it experimentally relevant to ask how Se scales
with the length l of the smaller subsystem in d spatial
dimensions. Certain eigenstates can be classified by an
“area law” Se ∼ ld−1 (e.g., describing various ground
states [4]) or a “volume law” Se ∼ ld (typical for highly
excited states in a thermal system [5]). The existence of
a Fermi surface can impart a logarithmic area-law correc-
tion: Se ∼ ld−1 log l [6]. In more exotic phases lacking a
local order parameter, Se = al−γ+ . . . describes a long-
range-entangled ground state with a universal area-law
offset γ due to topological order in d = 2 [7, 8].

Entanglement entropy has been particularly success-
ful at characterizing ground states of quantum impu-
rity systems, in which a local dynamical degree of free-
dom entangles with a dense set of host energy levels.
For example, the Kondo effect in metals is an inher-
ently quantum-mechanical phenomenon due to its sin-
glet ground state [9]. The natural expectation that the
size of the Kondo screening cloud dictates the spatial
range of entanglement has been confirmed in the Kondo
[10] and related [11, 12] models. However, in situations
where the Kondo effect breaks down at a continuous
quantum phase transition [13–27], the spatial structure of
Kondo screening is poorly understood. Is entanglement
long ranged near the quantum critical point (QCP), de-
spite the impurity becoming asymptotically free in the
Kondo-destroyed phase? This question is relevant for
heavy-fermion compounds—such as CeCu6−xAux [28],

YbRh2Si2 [29] and CeRhIn5 [30]—believed to exhibit a
Kondo-destruction QCP concomitant with a jump in the
Fermi-surface volume. Within an extended dynamical
mean-field theory, the universal aspects of the critical
destruction of the Kondo effect can be captured by map-
ping the lattice to an effective impurity model [31]. Thus,
entanglement studies of impurity QCPs can provide valu-
able insights into bulk quantum criticality.

We show that the numerical renormalization group
(NRG) can accurately determine the spatial entangle-
ment structure in the ground state of a magnetic impurity
in a metal or semimetal. Prior work has investigated the
“local” entanglement entropy, taking the impurity alone
to form subsystem A [27, 32]. Here, we compute Simp

e (R),
the impurity contribution to the entanglement entropy
between a region of radius R about the impurity and the
rest of the system. In a metal, where the impurity spin
becomes fully screened at temperatures T ≪ TK (the
Kondo temperature), we confirm the previously deduced
[10–12] scaling of Simp

e with R/RK , where RK ∝ 1/TK is
believed to be the characteristic size of the Kondo cloud.

Our main results are for the nonintegrable pseudogap
Kondo model [13], where a Kondo-destruction QCP sep-
arates a Kondo phase from a local-moment phase having
no static Kondo effect. This is one of very few prob-
lems where it has proved possible to quantify entangle-
ment near an interacting QCP without approximation or
bias. Each phase reveals a length scale R∗ such that for
R ≪ R∗, Simp

e takes its maximum value, signaling strong
entanglement associated with criticality. In the Kondo
phase, Simp

e decreases for R ≫ R∗, but (in contrast to
the metallic case) remains nonzero for R → ∞ due to
incomplete impurity screening [15]. In the local-moment
phase, the strong entanglement for R ≪ R∗ evidences
a dynamical Kondo effect, but Simp

e → 0 for R ≫ R∗.
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FIG. 1. NRG representation of the Kondo model as a tight-
binding Wilson chain of N sites coupled at one end to an
impurity spin. (a) In real space, Wilson site n corresponds to
a spherically symmetric band state with a radial probabilty
density peaked at a radius ∝ k−1

F Λn/2 from the impurity. (b)
The entanglement entropy Se(J, L,N) is found by splitting
the mapped system into subsystems A (the impurity and the
first L Wilson sites) and B (the remaining N − L sites).

In each phase, Simp
e is a universal function of R/R∗ with

power-law decay for R/R∗ ≫ 1. R∗ diverges on approach
to the QCP, leading to a maximal, scale-invariant entan-
glement extending throughout the host, implying that
the critical Kondo cloud subsumes the entire conduction
band. We expect similar behavior to hold near the bulk
Kondo-destruction QCPs in heavy-fermion compounds.
Model. The spin- 12 Kondo Hamiltonian is

H =
∑

k,σ

εk c
†
kσ ckσ+

J

2Nk

Simp ·
∑

k,k′,σ,σ′

c†
kσ σσσ′ c

k′σ′ , (1)

where ckσ destroys a band electron of wave vector k, en-
ergy εk, and spin component σ = ± 1

2 ; Nk is the number
of host unit cells; J is the local exchange between band
electrons and the impurity spin Simp; and σ is a vector
of Pauli matrices. We use a (simplified) density of states

ρ(ε) = N−1
k

∑

k

δ(ε− εk) = ρ0|ε/D|rΘ(D − |ε|), (2)

D being the half-bandwidth and Θ(x) the Heaviside func-
tion. The model has a rich phase diagram that crucially
depends on the band exponent r [15]: r = 0 corresponds
to the integrable Kondo problem in a metal [9], while the
semimetallic case 0 < r < 1

2 is nonintegrable and features
an interacting Kondo-destruction QCP at J = Jc > 0 at
which a critical impurity spin response is characterized
by nontrivial, r-dependent exponents [16].
We consider the impurity entanglement entropy

Simp
e (J,R) ≡ Se(J,R)−S

(0)
e (R), where Se(J,R) is the en-

tanglement entropy of the combined impurity-band sys-
tem with subsystem A consisting of the impurity plus

that part of the band within radius R of the impurity

site, and S
(0)
e (R) is the entanglement entropy of the band

alone when partitioned at the same radius [see Fig. 1(a)].
Since the exchange term in Eq. (1) is spherically symmet-
ric, the impurity affects only s-wave band degrees of free-
dom, and for purposes of calculating impurity-induced
properties, the problem reduces to one (radial) dimen-

sion. One then has [6, 33, 34] S
(0)
e (R) ∼ logR rather than

the full three-dimensional behavior S
(0)
e (R) ∼ R2 logR.

Method. We study Eq. (1) using the NRG [35, 36] as
modified to treat a power-law density of states [15]. The
band is mapped onto a semi-infinite tight-binding “Wil-
son chain” of sites labeled n = 0, 1, 2, . . ., coupled to
the impurity via site 0 only. A discretization parameter
Λ > 1 introduces a separation of energy scales that causes
the nearest-neighbor hopping to decay as tn ∼ DΛ−n/2

and allows iterative diagonalization of Kondo Hamiltoni-
ans HM on finite Wilson chains of length M = 1, 2, . . .,
N , where N is sufficiently large that tN is much smaller
than any energy of physical interest.
The system described by HN can be divided into a

subsystem A comprising the impurity and the first L
chain sites and a subsystem B containing the rest of
the chain [Fig. 1(b)]. We use the NRG solutions of HM

with L ≤ M ≤ N to compute the reduced density op-
erator ρA = TrBρ [37–40]. Here, ρ ∝ exp(−HN/kBT )
is the full density operator at temperature T ∼ tN/kB
so that Se(J, L,N) = −TrA(ρA ln ρA) is the ground-
state entanglement [41]. We also calculate the entan-

glement entropy S
(0)
e (L,N) for the chain alone. Both

Se(J, L,N) and S
(0)
e (L,N) become independent of N for

N ≫ L but include terms proportional to (−1)L that
decay only slowly with increasing L [11, 42]. We there-
fore focus on smoothed three-point averages Se(J, L) and

S
(0)
e (L), defining Simp

e (J, L) to be their difference. Inter-
estingly, even though the host exhibits conformal sym-
metry only for r = 0, in the continuum limit Λ → 1 with
1 ≪ L≪ N , we recover for any r the result for a critical

conformal field theory, S
(0)
e (L,N) = (c/6) lnL + b, with

an effective central charge c = 2 [40].
To find Simp

e vs R, we recall [43] that Wilson chain site
n has a single-electron wave function ψn(r

′) with great-
est radial probability density at radius r′n ≃ ηΛn/2/kF ,
where kF is the Fermi wave vector and η is of order
unity [see Fig. 1(a)]. In the continuum limit Λ → 1
and N → ∞, ψn(r

′) approaches a radial delta function.
For Λ > 1, we still expect Simp

e (J, L) to well approxi-
mate Simp

e (J,R = ηΛL/2/kF ). We present NRG results
obtained using Λ = 3, retaining up to 600 many-body
eigenstates after each iteration to reach a Wilson chain
of N = 161 sites. We choose η = 2Λ1/2/(Λ + 1) [43] and
employ units where D = ~ = kB = 1.
Results for metallic hosts. Figure 2(a) plots Simp

e vs
L for the conventional (r = 0) Kondo model with differ-
ent couplings J . For all but the largest J values, Simp

e
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FIG. 2. (a) Impurity entanglement entropy Simp
e vs Wilson

chain partition size L for a metallic host (r = 0) and different
Kondo couplings J labeled in the legend of (b). Lines are
guides to the eye. (b) Data from (a) replotted as Simp

e vs

R/RK , where R = ηΛL/2/kF and RK = 1/(kFTK) with TK

being the Kondo temperature extracted from the magnetic
susceptibility [40]. The collapse of data for different J values
points to a one-parameter scaling Simp

e (J,R) = f0(R/RK).
Inset: Data from main panel for ρ0J = 0.05 replotted on a log-
log scale showing an (R/RK)−1 tail (fitted line) for R ≫ RK .

starts for small L at the value ln 2 indicative of a sin-
glet formed between (i) a spin 1

2 arising from an impurity
that is negligibly screened by electrons occupying Wilson
sites n < L, and (ii) a net spin 1

2 representing the part of
the Kondo screening cloud residing on Wilson chain sites
n ≥ L. For large L, Simp

e approaches zero from above,
indicating that the impurity is being Kondo-screened al-
most entirely by electrons within subsystem A, leaving
an entanglement with subsystem B no greater than in
the absence of the impurity.

It is natural to associate the crossover from Simp
e ≃ ln 2

to Simp
e = 0 with the renormalization-group (RG) flow

from weak to strong coupling, known from much previ-
ous work [9] to be characterized by a single energy scale
TK . Accordingly, the entanglement is believed [11] to
have just one length scale RK ≃ 1/(kFTK). Figure 2(b)
replots data from Fig. 2(a) as Simp

e vs R/RK , revealing
an excellent collapse of results for different J and the
existence of a universal scaling Simp

e (J,R) = f0(R/RK).
For R/RK ≫ 1, Simp

e decays like (R/RK)−1 [see inset to
Fig. 2(b)], consistent with studies of spin chains [11] and
a resonant-level model [44].
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FIG. 3. Impurity entanglement entropy Simp
e vs Wilson chain

partition size L for a pseudogap Kondo model with band ex-
ponent r = 0.4. Symbols plot data for (a) J = (1 − 10x)Jc,
and (b) J = (1+10x)Jc, with values of x shown in the legend.
Thick lines show the critical case J = Jc.

Results for pseudogapped hosts. We focus on entangle-
ment near the Kondo-destruction QCPs that occur for
semimetallic densities of states described by exponents
0 < r < 1

2 . Figure 3 illustrates for r = 0.4 the varia-
tion of Simp

e with Wilson chain partition size L for values
of J close to Jc. In the local-moment phase [J < Jc,
Fig. 3(a)], Simp

e initially rises with increasing L to reach
a plateau maximum, only to fall toward zero for larger
partition sizes. These data show that even though the im-
purity spin asymptotically decouples from the band, the
impurity induces additional entanglement for finite val-
ues of L (or equivalently, at finite energies ≃ ±DΛ−L/2),
manifesting a dynamical Kondo effect.

In the Kondo phase (J > Jc), S
imp
e again initially rises

with increasing L to reach the same plateau maximum
before decreasing for larger L values [Fig. 3(b)]. Here,
however, the impurity induces an additional entangle-
ment that remains nonzero as L→ ∞. This is consistent
with the nonvanishing T → 0 limits of both the impurity
entropy and the effective magnetic moment, which sug-
gest that the impurity degree of freedom is only partially
screened in the pseudogap Kondo phase [15].

Figure 3 also shows that in either phase, Simp
e remains

near its plateau maximum to larger values of L the closer
J approaches Jc. We are thus led to one of our principal
conclusions: At the QCP [thick lines in Figs. 3(a) and
3(b)], the entire conduction band is maximally entangled
with the impurity, i.e., the ground state has long-range,
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FIG. 4. Data from Fig. 3 replotted vs R/R∗, where R =

ηΛL/2/kF and R∗ = 1/(kFT
∗) with T ∗ being a crossover

temperature scale extracted from the magnetic susceptibility
[40]. Symbols plot data for (a) J = (1 − 10x)Jc, and (b)
J = (1 + 10x)Jc with values of x labeled in the legend. Lines
show fits to data points (not shown) obtained for other values
of r. Insets: Log-log plots of large-R data for Simp

e (J,R) −
Simp
e (J,∞) vs R/R∗, calculated for a single Kondo coupling

(a) J < Jc, (b) J > Jc at each of four different band exponents
r > 0, with power-law fits (dashed lines).

scale-invariant entanglement.
The preceding picture implies that the eventual de-

crease in Simp
e vs L for J 6= Jc reflects the RG flow away

from the QCP, characterized by a crossover temperature
scale T ∗ ∝ |J −Jc|

ν , where ν(r) is the correlation-length
exponent [16]. Following the same reasoning as for a
metallic host, we expect T ∗ to be associated with a length
scale R∗ = 1/(kFT

∗). Figure 4 replots the r = 0.4 data
from Fig. 3 as Simp

e vs R/R∗ using values of T ∗ extracted
from the magnetic susceptibility [15, 40]. The collapse
of data for different J points to the existence of scaling
functions f±

r such that

Simp
e (J,R) = f±

r (R/R∗) for J ≷ Jc. (3)

Significant departures from scaling are seen only for the
smallest values of R, corresponding to the smallest L in
Fig. 3, and can be attributed to the NRG discretization.
Figure 4 also plots fitting curves from similar data col-
lapses for band exponents r = 0.2, r = 0.3 and r = 0.45
[45], as well as [in panel (b)] the metallic case r = 0.

Whereas in the local-moment phase Simp
e → 0 for

R/R∗ → ∞, in the Kondo phase Simp
e approaches for

R/R∗ ≫ 1 a value that is well-approximated by Simp
e ≃

3
2r ln 2 [40]. Insets in Fig. 4 show that in either phase,
the impurity entanglement entropy has a power-law tail

Simp
e (J,R)−Simp

e (J,∞) ∝ (R/R∗)−α for R ≫ R∗. (4)

Fitted exponents are consistent with α = 2r for J < Jc
and α = min(1−r, 2−4r) for J > Jc, values that represent
twice the dimension of the leading irrelevant operator at
the local-moment and Kondo fixed points, respectively
[40]. This observation is consistent with the interpreta-
tion that the power-law tails are associated with the RG
flow toward a stable fixed point.
Discussion. We have elucidated the spatial entan-

glement structure in a family of Kondo models. The
impurity entanglement entropy Simp

e (R) for a partition
at radius R around a magnetic impurity depends only
on R divided by R∗ ∝ 1/T ∗, with power-law decay for
R ≫ R∗. In a metal, T ∗ is the Kondo temperature and
R∗ is always finite. In a semimetal, the many-body scale
T ∗ vanishes like |J − Jc|

ν on approach to an interacting
QCP so Simp

e (R) becomes infinite ranged and scale in-
variant; the impurity imparts to the total entanglement
Se = (2/6) lnR+Simp

e a universal critical offset indepen-
dent of the area of the subsystem boundary, reminiscent
of certain 2D topological phases [7, 8]. These results
were obtained near a particle-hole-symmetric QCP, but
we expect similar behavior at the asymmetric interact-
ing QCPs that arise for 0.375 . r < 1 upon addition of
potential scattering to Eq. (1) [15].
This work opens a way to study the entanglement

structure in more general (e.g., multiband and/or dis-
sipative bosonic) impurity models, both in and out of
[39] equilibrium, and in correlated lattice models treated
within dynamical mean-field theory [46]. In any Kondo-
destroyed phase, despite suppression of static screening,
we expect a dynamical Kondo effect to entangle the sys-
tem over a range that diverges on approach to the Kondo
phase boundary. On a technical level, this implies that
the ground state cannot be adequately described by a
static slave-boson amplitude [47]; dynamical effects must
be accounted for. Our findings also suggest that the
Kondo-destruction QCP observed in heavy fermions is
accompanied by long-range entanglement between all lo-
cal moments and the entire conduction band. Future
work should pursue a connection between this scale-
invariant entanglement and the reconstruction of critical
Fermi surfaces.
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